

water & sanitation

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

Geotechnical Report: Lower Coerney Dam Site

7 March 2019 Revision: 1 Reference: 112546

Support of the Water Reconciliation Strategy for the Algoa Water Supply System

Document control record

Document prepared by:

Aurecon South Africa (Pty) Ltd

Reg No 1977/003711/07 Aurecon Centre Lynnwood Bridge Office Park 4 Daventry Street Lynnwood Manor 0081 PO Box 74381 Lynnwood Ridge 0040 South Africa

T +27 12 427 2000

- F +27 86 556 0521
- E tshwane@aurecongroup.com
- W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- a) Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- **b)** Using the documents or data for any purpose not agreed to in writing by Aurecon.

Docu	iment control					aurecon	
Repo	rt title	Geotechnical Report: Lowe	r Coerney Dam	Site			
Document ID		12065	Project nun	Project number		112546	
File path		\\Aurecon.info\shares\ZACPT\Projects\Projects\112546 Algoa Recon Support\03 Prj Delivery\11 Options Analysis\10 Geotechnical\Report Lower Coerney\2019 03 07 - Lower Coerney Geotechnical Report - Final.docx					
Client		Department of Water & Sanitation					
Client contact		Mr Tony Moore	Client refer	Client reference			
Rev	Date	Revision details/status	Author	Reviewer	Verifier (if required)	Approver	
0	13 December 2018	First draft	GN Davis	S Naidoo		E v d Berg	
0	31 January 2019	Final draft	GN Davis	S Naidoo		E v d Berg	
1	7 March 2019	Final	GN Davis	S Naidoo		E v d Berg	
Curre	nt revision	1					

Coordinates	-33° 26' 53.5" 25° 37' 32.9"
Keywords	Engineering geology; ground investigations, geotechnical; founding conditions; dam;
	spillway

Approval			
Author signature	A	Approver signature	FreeBay
Name	GN Davis Pr Sci Nat	Name	E van der Berg Pr Eng
Title	Technical Director	Title	Technical Director

DEPARTMENT OF WATER AND SANITATION

Directorates: National Water Resource Planning and Options Analysis

Support of the Water Reconciliation Strategy for the Algoa Water Supply System

Geotechnical Report: Lower Coerney Dam Site

March 2019

Prepared by:	Aurecon South Africa (Pty) Ltd P O Box 494 Cape Town, 8000 South Africa	
		021 5265790 086 5269500 erik.vanderberg@aurecongroup.com
Prepared for:	Director: National Water Resource Planning Director: Options Analysis Department of Water and Sanitation Private Bag X313 Pretoria 0001 South Africa	
	Tel: 012 33	Makombe (PE: NWRP, Central) 6 8503 kombet@dws.gov.za
	Tel: 012 33	oore (CE: Options Analysis) 6 6838 oret@dws.gov.za

This report is to be referred to in bibliographies as:

Department of Water and Sanitation, South Africa 2019, Geotechnical Report: Lower Coerney Dam Site. Report Number P WMA 07/N40/00/2619/2. Prepared by Aurecon South Africa (Pty) Ltd as part of the Support of the Water Reconciliation Strategy for the Algoa Water Supply System.

Department of Water and Sanitation Directorates: National Water Resource Planning and Options Analysis

SUPPORT OF THE WATER RECONCILIATION STRATEGY FOR THE ALGOA WATER SUPPLY SYSTEM

APPROVAL

Title	;	Geotechnical Report: Lower Coerney Dam Site
Consultant	:	Aurecon South Africa (Pty) Ltd
Report status	:	Final
Date	2	March 2019

STUDY TEAM

Approved for Aurecon South Africa (Pty) Ltd:

E VAN DER BERG Technical Director

DEPARTMENT OF WATER AND SANITATION Directorates National Water Resource Planning and Options Analysis

Approved for Department of Water and Sanitation:

.

29/10/19 P MLILO

T MAKOMBE

A J MOORE

CE: Options Analysis

DIRECTOR: NWRP

Document Index

Reports that will be produced as part of this Study are indicated below.

Bold type indicates this Report.

Report Index	Report Number	Report Title
1		Inception
2		Water Requirements Chapter
3		Identifications of Options for Balancing Storage Chapter
4		Environmental Constraints Analysis
5	P WMA 15/N40/00/2517/1	Topographical Survey
7A	P WMA 07/N40/00/2619/1	Geotechnical Report: Upper Scheepersvlakte Dam site
7B	P WMA 07/N40/00/2619/2	Geotechnical Report: Lower Coerney Dam Site
8		Desktop assessment of short-listed options Chapter
9	P WMA 15/N40/00/2517/3	Options Analysis Report
10		Affected land and infrastructure and Project Layout
11		Feasibility-level engineering design - balancing dam
12		Feasibility-level engineering design - conveyance infrastructure
13		Feasibility-level cost and implementation analysis
Ed``14		Legal requirements and processes, O&M, institutional requirements, implementation-ready processes, programme and implementation process
15	P WMA 15/N40/00/2517/4	Feasibility Study Report
16	P WMA 15/N40/00/2517/5	Stakeholder Participation: Feasibility Study

Executive Summary

Aurecon South Africa (Pty) Ltd were appointed by the Department of Water & Sanitation (DWS) to investigate various options for augmenting water supply to Port Elizabeth. As part of the wider study geotechnical investigations have been conducted at the two most favourable dam sites, namely a site immediately upstream of the existing Scheepersvlakte Dam, called Upper Scheepersvlakte, and a site located in the adjacent catchment, designated the Lower Coerney site. This report presents the findings of the Lower Coerney investigations; the findings for the Upper Scheepersvlakte option are presented in a separate report.

These geotechnical investigations included the following elements;

- Geophysical (resistivity) surveys,
- Test pitting,
- Rotary core drilling,
- Field testing including SPT's and packer (Lugeon) testing,
- Laboratory testing, followed by
- Interpretation, analysis and reporting.

The underlying geology comprises thin grey sandstones, siltstones and mudrocks of the Sundays River Formation of the Uitenhage Group, part of a collection of sedimentary strata within the structurally controlled Algoa Basin.

The seismic hazard of the area is considered to be very low and the Peak Ground Acceleration (PGA) values are less than 0.02g, with a 10% probability of being exceeded in a 50-year period.

The dam site is characterised by gentle, almost flat slopes; as is the greater basin. For the most part, the site is covered by very dense bush.

The geological profile is characterised by soil strata with thickness up to 7 m to 8 m on the left flank, but 3 m to 4 m on the right flank and river section. Various horizons are recognised, including topsoil, colluvium as well as colluvium with evidence of pedocrete development, and a horizon of gravel-sands, considered to represent reworked terrace gravels, that blankets the bedrock across the entire dam footprint, as well as the basin. Bedrock comprises an alternating succession of sandstones and mudrocks, including silty sandstones. The lateral continuity of these strata is uncertain. The bedrock is characterised by extensive, pervasive weathering, and these rocks are generally considered weak rocks.

The transported soils essentially comprise mixtures of sand and silt; either sandy silt or silty sand. Clay is typically absent or negligible. A coarser fraction is present within the 'reworked terrace gravels' but is not uniformly distributed. In places a concentrated coarse fraction occurs and in others the coarse fraction is a minor component. The permeability of the respective soil strata varies between 1.84 x 10^{-5} cm/s and 2.62 x 10^{-7} cm/s. The suite of dispersivity tests indicate the soils are at least of intermediate dispersivity.

The geological profile, as well as other factors such as the topography, indicates that only an embankment dam is possible at this site. There are no suitable sources of rock in the immediate vicinity, and an earthfill embankment is the only viable option. A cut-off (under the embankment) would generally have to extend to the base of the gravel soils in order to ensure the potential seepage is effectively cut off. The side channel spillway on the left flank would be underlain by soils and weak bedrock; full concrete lining of the chute will be required and provision for energy dissipation must be included at the downstream end.

Packer tests within the bedrock yielded variable results, and included some significant losses ascribed to wash-out of weathered, soft rock interbeds.

In addition to the delineation of local borrow areas, follow-up investigations required for detailed design purposes would also address aspects such as confirmation of the geological continuity (laterally and with depth) across the dam and spillway footprint, as well as the geohydrological characterisation of the buried stratum of gravel-sands. Any other design optimisations would also require that appropriate geological and geotechnical investigations are carried out.

Contents

1	Introd	uction		1
2	Availa	ble infor	mation	3
3	Invest 3.1 3.2 3.3 3.4	Geophys Test pitti Rotary c	nethodology sical surveys ng ore drilling ory testing	4 4 6
4	Regio	nal geolo	ogy	8
	4.1 4.2 4.3 4.4	Structura Economi	phy and lithology al geology and seismic hazard ic geology ing and geomorphology	9 .10
5	Invest	igation f	indings	12
	5.1 5.2		cription al profile	
		5.2.1 5.2.2 5.2.3 5.2.4	Left flank, including spillway River section Right flank Reservoir basin	16 20
	5.3	•	properties	
		5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7	Foundation Indicator results Physical properties Compaction Shear strengths Permeability Dispersivity Rock material strengths	.25 .26 .27 .27 .28
6	Geote	chnical o	considerations	31
	6.1	Site suita 6.1.1 6.1.2 6.1.3 6.1.4	ability and founding conditions Topography Soil horizons Bedrock Suitable dam types	.31 .31 .34
	6.2	Excavati	on depths	35
		6.2.1 6.2.2 6.2.3 6.2.4	Embankment shell zones Embankment cut-off Intake and outlet works Spillway	.36 .37
	6.3 6.4 6.5	Erodibilit	on permeability and foundation treatment y ction materials	41
		6.5.1 6.5.2 6.5.3	Embankment fill materials Filter sands Coarse aggregate for concrete	42 47

 8 Report limitations 9 References 			
		Report limitations	
	7.2	Follow-up investigations	52
	7.1	Site comparatives	
7	Con	clusions and Recommendations	
	6.7	Reservoir basin slope stability	48
	6.6	Stability of cut slopes	

Appendices

- Appendix A: Summary of soil and rock description terminology
- Appendix B: Borehole logs
- Appendix C: Core photographs
- Appendix D: Soil profiles
- Appendix E: Laboratory test data
- Appendix F: Packer (Lugeon) test data
- Appendix G: Geophysical survey results
- Appendix H: Groundwater evaluation
- Appendix I: Drawings

Figures

Figure 1.1:	General locality plan of the respective alternate dam sites	1
Figure 4.1:	Excerpt of geological map (Sheet 3324)	8
Figure 4.2:	Geological explanation, excerpt from geological map	8
Figure 4.3:	Excerpt of the seismic hazard map of South Africa (after Kijko et al, 2003)	10

Tables

Table 1.1:	Dam design details, Upper Scheepersvlakte and Lower Coerney sites	2
Table 3.1:	Test pit summary	5
Table 3.2:	Borehole summary	6
Table 3.3:	Summary of laboratory tests conducted	7
Table 5.1:	Lower Coerney left flank test pits; summarised geological profile (depths in m)	13
Table 5.2:	Lower Coerney left flank boreholes, summarised geological profile (depths in m)	13
Table 5.3:	River section, summarised test pit profiles (depths in metres)	16
Table 5.4:	River section, summarised borehole profiles (depths in metres)	17
Table 5.5:	Right flank, summarised test pit profiles (depths in metres)	20
Table 5.6:	Right flank, summarised borehole profiles (depths in m)	20
Table 5.7:	Reservoir area, summarised geological test pit profiles (depths in m)	22
Table 5.8:	Summarised Foundation Indicator results	23
Table 5.9:	Summarised relative density values	
Table 5.10	: Summarised moisture content results	26
Table 5.11	: Summarised Proctor compaction results	26
Table 5.12	: Summarised drained slow shearbox test results	27
Table 5.13	: Lower Coerney, summarised permeability test results	28

Table 5.14	: Lower Coerney, summarised dispersivity test results	28
Table 5.15	: Summarised Point Load strengths	30
Table 6.1:	Gravel horizon, summarised depths and thickness (all metres)	32
Table 6.2:	Summarised excavation depths for impervious cut-off trench	37
Table 6.3:	Summarised excavation depths for outlet works	38
Table 6.4:	Summarised Water Acceptance (Packer) Test results	41
Table 6.5:	Scheepersvlakte Dam, homogeneous earthfill specifications (DWA, 1988)	43
Table 6.6:	Summarised material properties and comparison against typical requirements (impervious core)),
	after Badenhorst, 1988	44
Table 6.7:	Summarised material properties and comparison against typical requirements for outer shell	
	zones (after Badenhorst, 1988)	45
Table 7.1:	Summarised geotechnical factor comparisons	50

Plates

Plate 5.1	General panorama of Lower Coerney site, from the access track a short distance downstream of	
	the centre-line (which is to the left)	2
Plate 5.2:	General view of left flank conditions, looking here along the spillway alignment in a downstream	
	direction	3
Plate 5.3:	River section view, looking towards right flank (test pit LC03 in foreground)	8
Plate 6.1:	The gravelly layer as exposed within a test pit (this view test pit LC22); the boundary indicated by	/
	the dotted line	33
Plate 6.2:	Spoil from the same test pit, better illustrating the nature of the gravelly material	34

Drawings

112546-GEO-DRG-CC-001	Investigation layout
112546-GEO-DRG-CC-002A	River section and right flank: Section A-A'
112546-GEO-DRG-CC-002B	Left flank: Section A-A'
112546-GEO-DRG-CC-003	Section B-B'
112546-GEO-DRG-CC-004	Spillway: Section C-C'
112546-GEO-DRG-CC-005	Borehole key

Abbreviations

DWS	Department of Water and Sanitation
FSL	Full Supply Level
GPS	Global Positioning System
GWS	Government Water Scheme
mamsl	Metres above mean sea level
NOCL	Non-overspill Crest Level
ORP	Orange River Project
PGA	Peak Ground Acceleration
SPT	Standard Penetration Test

1 Introduction

Aurecon South Africa (Pty) Ltd was appointed by the Department of Water & Sanitation (DWS) to investigate various options for improving the assurance of supply that is provided by the Scheepersvlakte Dam to the Nooitgedagt WTW. Of the various options identified, two possible alternate new dam sites were recognised as the most favourable, namely a site immediately upstream of the existing Scheepersvlakte Dam, called Upper Scheepersvlakte, and a site located in the adjacent catchment, designated the Lower Coerney site. The locations of these sites are illustrated below in **Figure 1.1**.

In order to support selection of a preferred site, geotechnical investigations were initiated at both these options. This report presents the findings of these geotechnical investigations of the Lower Coerney dam site. The findings of the Upper Scheepersvlakte site are presented in a separate report (Reference 112546-G1-00). For ease of comparison, however, the comparative findings of both sites are summarised in each report.

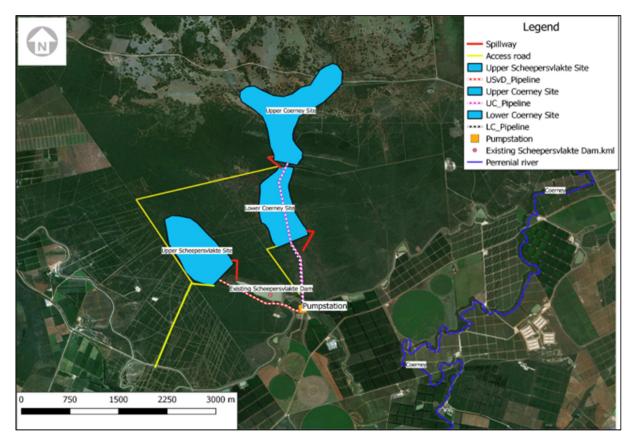


Figure 1.1: General locality plan of the respective alternate dam sites

The preliminary dam details are summarised below in **Table 1.1.**

Dam feature	Upper Scheepersvlakte Dam	Lower Coerney Dam
Type of dam	Zoned Earthfill Embankment	Zoned Earthfill Embankment
NOC (amsl)	130.3	103.8
FSL (amsl)	128.1	98.8
Freeboard (m)	2.2	5.0
Crest width (m)	5.0	5.0
DS slope (1V:H)	2.0	2.0
US slope (1V:H)	3.0	3.0
Embankment fill volume (m ³)	373,740	355,993
Core trench volume (m ³)	36,488	46,798
Crest length (m)	524	623
Total gross dam capacity (m ³)	4,600,000	4,600,000
Surface area at FSL (ha)	589,301	597,317
Maximum wall height (m)	25.3	19.0
Catchment area (km ²)	3.5	34
Unrouted SEF Inflow (m ³ /s)	220	890
Spillway configuration description	Concrete-lined, 10m wide, side channel spillway located on the left abutment. (Note: spillway position dependant on geotechnical conditions)	Concrete-lined, 36 m wide, side channel spillway located on the left abutment. (Note: spillway position dependant on geotechnical conditions) with downstream concrete outlet chamber, 4x4x3m, with 2 valves for the two pipes.
Outlet works description	Dry well tower (25 m high) with inside dimensions of 4x4m. Three offtake levels controlled by valves.	Dry well tower (19 m high) with inside dimensions of 4x4m. Three offtake levels controlled by valves.
Access road length (km)	2.0	1.0

Table 1.1: Dam design details, Upper Scheepersvlakte and Lower Coerney sites

2 Available information

A number of investigations have been conducted over the years, specifically for the original Scheepersvlakte Dam. No prior investigations have been conducted for the proposed Upper Scheepersvlakte dam, however.

The proximity of these investigations (less than 1 km as the crow flies) implies some relevance to general conditions that would be encountered at the Lower Coerney site, but these earlier investigations are not unpacked in this report. One useful reference report was the Completion Report for Scheepersvlakte Dam (DWAF, 1992).

In the reporting on the Scheepersvlakte investigations¹ it is mentioned, however, that earlier investigations were conducted in 1978/79 at what is presumably the current Lower Coerney option, before investigations shifted to the Scheepersvlakte "side-valley" option that proceeded to be constructed. At the time these investigations were also called "Scheepersvlakte" but actually might be referred to as "Coerney". These original investigations at the Coerney option considered three centre-lines. It is mentioned that 20 boreholes (total length 340,97 m) were drilled; concentrated mostly at an "upper" site. There is also mention of trenching only having been carried out at a "middle" site, while a "lower" site was also investigated.

The Scheepersvlakte "side valley" report (Geological Survey, 1987) mentioned that a separate report would be prepared for these "Coerney" investigations, but it remains doubtful whether this was actually done.

A geotechnical investigation of the Coerney site was carried out in 2016 by Outeniqua Lab EC who were appointed by Inconsult Engineers². The work primarily comprised excavation and profiling of test pits (17 No), accompanied by laboratory testing.

Other available information that was consulted is listed below. Publications and other reference articles, books etc. are listed in Chapter 9 References.

• Geological map Sheet 3324 Port Elizabeth. Council for Geoscience.

¹ Scheepersvlakte Dam – Side Valley Site; 1st Engineering Geological Feasibility / Design Report – Founding Conditions. February 1987. Geological Survey Report.

² Outeniqua Lab EC cc. 2016. Geotechnical Report. *Geotechnical Site Investigation for the Proposed Scheepersvlakte Irrigation Scheme Dam near Port Elizabeth in the Eastern Cape*. Report to Inconsult Engineers, dated 22 July 2016.

3 Investigation methodology

3.1 Geophysical surveys

Resistivity surveys were conducted by specialist geophysicists, Engineering & Exploration Geophysical Surveys cc (EEGS).

The purpose of commencing these geotechnical investigations with the geophysical surveys was primarily to identify sub-surface anomalies that might potentially impact on the envisaged layout, and thus provide potential targets for the boreholes, which would aim to validate these anomalies.

It might be noted that vegetation proved too dense to allow working access, and environmental constraints placed strict limits on the extent of permissible bush clearing. It was therefore necessary to appoint a service provider, B K Bush Clearing, to manually clear cut-lines along these geophysical traverses. It is worth noting that these "cut-lines" had a width intended for pedestrian traffic, not vehicular access, even though in places it was possible to use these cut-lines for access by the TLB. The larger trees were however not cut and access was still limited.

Three traverses were set out; one longitudinal traverse along the centre-line, one traverse essentially perpendicular to the centre-line, roughly aligned along the intake – outlet conduit, and the third traverse aligned along the spillway. The positions of these traverses are shown in Drawing 112546-GEO-DRG-CC-001.

Detailed description of the methodologies, and the equipment used, as well as the results, are presented in the Appendices. The findings are incorporated into the discussion on the geological profiles encountered.

3.2 Test pitting

Test pits were excavated both on the dam footprint, including the spillway, as well as within the potential reservoir. A test pit summary is presented below in **Table 3.1**. A total of eleven test pits were excavated on the dam footprint, and three within the reservoir. Test pit positions are indicated on the site plan (Dwg 112546-GEO-DRG-CC-001-A). Clearing of traverse lines for the geophysics greatly enhanced the ability to access the dam footprint area for test pitting. Access within the general basin area was however severely restricted; only a few existing tracks enabled limited access. The greater part of the basin was inaccessible and has not yet been investigated.

Test	Coordinates		Termination	Domorko
Pit No	Y	X	depth (m)	Remarks
LC02	Y-058111	X3702708	2.75	No refusal, no water
LC03	Y-058187	X3702632	2.4	No refusal, no seepage
LC04	Y-058140	X3702665	1.35	Near-refusal, no seepage
LC05	Y-058115	X3702619	2.25	No refusal, no seepage
LC06	Y-058320	X3702486	1.65	No refusal but slow excavation, no seepage
LC07	Y-058175	X3702718	2.25	Near-refusal, no seepage
LC08	Y-058402	X3702424	1.5	No refusal but slow at 1.5 m, no seepage
LC09	Y-058262	X3702543	2.4	No refusal, no seepage
LC10	Y-058447	X3702411	1.6	No refusal but slow at 1.6 m, no seepage
LC11	Y-058381	X3702592	1.95	No refusal but slow at 1.95 m, no seepage
LC12	Y-058355	X3702759	2.35	Refusal on boulders, no seepage
LC20	Y-058164	X3702165	1.95	No refusal but slow at 1.95 m, no seepage
LC22	Y-057865	X3702228	2.4	Refusal on hardpan calcrete, no seepage
LC23	Y-057735	X3702243	2.25	No refusal, no seepage

Table 3.1: Test pit summary

The test pits were excavated using a light JCB 3DX tractor-loader backhoe (TLB), sub-contracted from Rennasance Construction by Tosca Lab (Pty) Ltd.

Test pits were profiled by a graduate civil engineer and an engineering geologist in accordance with accepted southern African standards (as per Jennings, Brink, and Williams, 1973).

The two-person team carrying out the test pitting ensured compliance with accepted safety requirements as reflected in the South African Code of Practice (SAICE: 2007). Further observance of good safety practice is exhibited by the following;

- Compilation of a Health & Safety File in compliance with the South African OHS Act, including the necessary legal appointments.
- Maintaining good management of the TLB and the excavation process, including placement of spoil away from the pit edges, maintaining a safe distance from the machine, conducting a full briefing / induction of the operator, excavation of a sloping ramp at one end for easier entry / egress etc.
- Conducting a risk assessment by the competent person prior to entering the test pit.
- Test pits were closed after profiling, and sampling. No pits were left open overnight.

Test pit positions were recorded with a Garmin hand-held GPS. Coordinates in South African grid, WGS84 datum, are reflected in **Table 3.1**.

3.3 Rotary core drilling

A total of six rotary cored boreholes were drilled on the dam footprint / spillway and positions are shown on Drawing 112546-GEO-DRG-CC-001-A. No boreholes were drilled within the general reservoir area. Borehole details are summarised below in **Table 3.2.** All boreholes were drilled vertically.

DUNE	Coordinates			BH	Demode
BH No	Y	x	Elevation	length (m)	Remarks
LC BH01	-58099.59	3702689.25	83.36	15.01	Mid-right flank
LC BH02	-58215.90	3702532.15	89.15	20.45	Intake, lower left flank
LC BH03	-58252.35	3702625.65	84.30	20.43	Outlet, lower left flank
LC BH04	-58170.99	3702620.43	81.82	15.04	Mid -embankment / lowest point
LC BH05	-58427.33	3702391.34	102.01	10.03	Extreme left flank / spillway crest
LC BH06	-58387.47	3702608.97	89.98	10.1	Spillway

Table 3.2: Borehole summary

Specialist geotechnical drilling contractor, RWBE Geotechnical Drilling, was appointed for the drilling. Where possible, Standard Penetration Testing (SPT's) was carried out. In practice, the presence of gravels and cobbles within the soil profile severely limited the number of tests that were possible. Water acceptance (also referred to as packer or Lugeon) tests were carried out in selected boreholes, after the methodology described by Houlsby (1976).

Boreholes were located to investigate key elements of the dam – with due cognisance of the geophysics survey results. Borehole cores were logged in accordance with accepted standards. Logs are included in the Appendices, as are photographs of the borehole cores.

Boreholes were set out initially using a hand-held GPS, but the completed boreholes were accurately surveyed by DWS Survey Services.

3.4 Laboratory testing

Representative samples were submitted to Tosca Lab in Port Elizabeth for testing. A list of tests conducted is presented below (**Table 3.3**). Samples comprised both disturbed bulk samples as well as undisturbed samples.

Table 3.3: Summary of laboratory tests conducted

Test	Quantities
Foundation Indicators	19
Moisture content	7
Relative density	4
Standard AASTHO (Proctor) compaction	8
Permeability	7
Shear box	10
Suite of dispersivity tests, comprising i) Pinhole test, ii) crumb test, iii) double hydrometer test, and iv) exchangeable sodium percentage (ESP) test.	4

Detailed test results are included in the Appendices, and the findings are discussed below (Section 5.3).

4 Regional geology

4.1 Stratigraphy and lithology

Geologically, the area of interest falls within the Algoa Basin which is one of the complex graben and half-graben structures along the present eastern and southern coast associated accumulations of Jurassic and Cretaceous deposits. These basins formed along the margins of the newly-formed African continent at the time of the break-up of Gondwana (Shone, 2006).

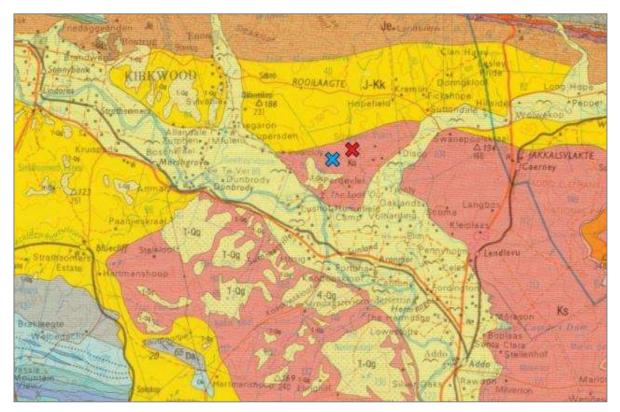


Figure 4.1: Excerpt of geological map (Sheet 3324) The two site options are marked with crosses (blue = Upper Scheepersvlakte, red = Lower Coerney)

CRETACEOUS		Sundays River	NS
	UITENHAGE <	Kirkwood	Ј-Кк
		Enon	Jer
JIIRA			and the second se

According to the 1:250 000 geological map (Port Elizabeth Sheet 3324, Council for Geoscience), the dam sites are both underlain by the strata of the Sunday River Formation, although in both instances the upper reaches of the respective basins are underlain by strata of the Kirkwood Formation. All are part of Uitenhage Group (Figure 4.1, Figure 4.2).

The older Kirkwood Formation consists of porous and permeable, coarse- to medium-grained, buff- and olive coloured lithic sandstone. Sandstone beds may be up to several metres thick and of variable lateral extent, interbedded with thick (often more than 30 m thick), red and greyish green siltstones and mudrocks.

The younger Sundays River Formation overlies and appears to grade laterally into the Kirkwood Formation. This Sundays River Formation consists of thin grey sandstones, siltstones and mudrocks. The sandstones are less porous and permeable than the older Kirkwood strata.

The oldest Enon Formation sediments of the Uitenhage Group are located to the north of the area of interest and do not impact directly on the discussion on the prevailing geological and geotechnical conditions of the respective sites. There is however an indirect impact, and this is dealt with at a later point.

4.2 Structural geology and seismic hazard

It is mentioned above that the Algoa basin is a half-graben structure. Such a basin is defined by faulting, in this case on the northern boundary, and the relative subsidence of the 'fault-defined' block (horst) in effect created the basin in which the sediments accumulated. The Algoa basin is known to be more complex than most, with diagonal faults cutting the horst block.

Several other prominent faults are recognised in the general area, including the Coega Fault which extends from west of the Groendal Dam to beyond the mouth of the Coega River. This fault has a vertical displacement in excess of 2000 m. these prominent NW to SE trending faults are as close as 35 - 40 km from the proposed balancing dam sites.

While the sediments within the Algoa Basin are not significantly deformed, and only display a nominal shallow dip towards the present coast, these basins are located within the Cape Fold Belt and the older Table Mountain Group strata are intensely folded. These shallow dips of approximately 10 degrees are seemingly confirmed by detailed mapping of the Scheepersvlakte Dam foundations.

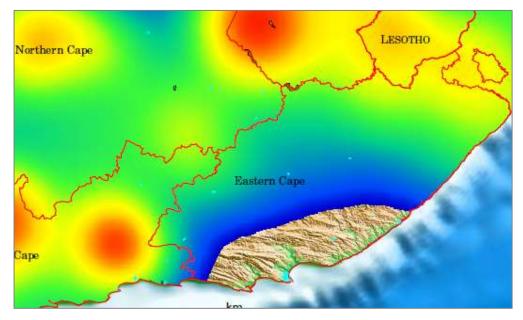


Figure 4.3: Excerpt of the seismic hazard map of South Africa (after Kijko et al, 2003)

Even though the very existence of the Algoa Basin is directly linked to faulting, and other regionalscale faults are also recognised, the seismic hazard of the area is considered to be very low. Figure 4.3 is an excerpt of the seismic hazard map (after Kijko, et al, 2003) which shows the Peak Ground Acceleration (PGA) values of less than 0.02g, where these are with a 10% probability of being exceeded in a 50-year period.

4.3 Economic geology

There are no known reserves of economically important minerals within the respective dam basins. Within the general area economic activities relating to the geology would revolve around construction materials, including suitable rocks for processing of aggregates, as well as clays for brick-making. There are no such active commercial quarry sites in either of the two dam basins.

4.4 Weathering and geomorphology

The area of interest lies to the east of Weinert's N = 5 line and it is estimated that the appropriate value is likely in the order of 3 to 3.5 (Port Elizabeth is at 2.6), as per Weinert, 1980. This indicates that chemical decomposition is the dominant mode of weathering. Typically, this would suggest deep residual soil profiles, but this is not a feature of the profiles encountered.

The higher-lying areas in the general area are also characterised by the formation of pedocretes associated with the African erosion surface; in this instance calcrete. On the respective dam sites,

the calcrete formation was recognised, but was not developed to any significant degree. A harder capping of calcrete hardpan or 'duricrust' is noted on the higher-lying areas beyond the dam basin.

There is no evidence of erosion and depositions being currently-active geological processes.

The evolution of the sedimentary basin, as well as periods of fluctuating sea levels have however complicated the geological sequence observed. The area extending between the current coast and the Zuurberge mountain range to the north of the dam sites representing a relatively level wave cut platform linked to a period of elevated sea level. Such wave erosion in the period roughly between 20 and 2 million years ago would have resulted in erosion of the older Enon Formation conglomerates at the foothills of the Zuurberge – and redistribution of these gravels in a 'veneer' across the coastal plain, while also concentrating these gravels in alluvial channels.

5 Investigation findings

5.1 Site description

The dam site is characterised by gentle, almost flat slopes; as is the greater basin. For the most part, the site is covered by very dense bush. As mentioned, this required cutting of traverse lines for the geophysical survey to proceed. Limited jeep tracks along farm boundaries also facilitated vehicle access (**Plate 5.1**), specifically downstream of the dam site, and traversing the left flank, and another traversing the basin area. With the exception of these tracks the bush is generally impenetrable, although open areas were occasionally present.

The description that follows includes the subdivision of 'river section'. It is noted however that there is no clearly defined water course as such.

Plate 5.1 General panorama of Lower Coerney site, from the access track a short distance downstream of the centre-line (which is to the left)

5.2 Geological profile

5.2.1 Left flank, including spillway

Subsurface conditions on the left flank, inclusive of the spillway (**Plate 5.2**), have been investigated by geophysical traverses, test pits as well as boreholes, as shown on Drawing 112546-GEO-DRG-CC-001-A. The summarised findings are presented below in **Table 5.1** in the case of the test pits and **Table 5.2** for the boreholes. A longitudinal geological section has been compiled (drawings 112546-GEO-DRG-CC-002A-A and 112546-GEO-DRG-CC-002B-A).

It has been mentioned that the dense bush restricted access, and that this was then chiefly via the narrow cleared intersect lines, and the track which traverses the left flank. The positions of the test pits, as well as the boreholes were partly governed by this access. A broad spread of test pits was achieved across the left flank; extending from lower flank, to mid- and upper flank areas. A test pit was also excavated midway along the spillway alignment.

TP no	Topsoil; silty to clayey sand, loose to medium dense, or dense	Colluvium; silty sand with gravels, medium dense to dense, or very dense	Colluvium, partly pedogenic; silty sand with calcrete / ferricrete nodules / near-hardpan, dense to very dense	Mixed origin; clayey silt, very stiff
LC09	0-0.4	0.4 - 0.85	0.85 – 1.2	1.2 – 2.4+
LC11	0-0.3	0.3 – 0.5	0.5 – 1.95+	
LC06	0-0.2	0.2 – 0.5	0.5 – 1.65+	
LC08	0-0.3		0.3 – 1.5+	
LC10	0 – 0.3	0.3 – 0.7	0.7 – 1.6+	

 Table 5.1: Lower Coerney left flank test pits; summarised geological profile (depths in m)

Table 5.2: Lower Coerney left flank boreholes, summarised geological profile (depths in m)

BH no	Colluvium; slightly clayey, silty sand	Alluvium / mixed origin; gravels in sand matrix	Mudstone; highly to completely weathered, soft to very soft rock	Mudstone; unweath'd, hard rock	Interbedded mudstone / sandstone; highly to moderately weathered, generally medium hard rock	Sandstone; highly (to completely) weathered, hard (soft / to sand) rock	Sandstone; moderately weathered, hard rock
LC BH02	0 – 2.65	2.65 – 7.7	7.7 – 9.75		9.75 – 14.15	15 15 - 19 33	19.33 – 20.45
LC BH03	0 – 1.28	1.28 – 4.05		15.16 – 20.43	4.05 - 12		12 – 15.16
LC BH05	0 - 4	4 – 7.2	7.2 – 10.03				
LC BH06	0 – 5.45	5.45 – 6.7				6.7 – 10.1	

Plate 5.2: General view of left flank conditions, looking here along the spillway alignment in a downstream direction

Boreholes were drilled at specific elements of the proposed dam layout; specifically, the lower flank areas to cover the intake / conduit outlet (boreholes LC BH02 and LC BH03, respectively), as well as the upper flank / crest coinciding with the spillway crest (borehole LC BH05). A further borehole was drilled roughly midway along the spillway chute (LC BH05)

The geophysics profiles confirm the flank is essentially a 'conductor', which would generally be consistent with weathered rock. The left flank in particular is characterised by a 'conductor'; a slight increase in resistivity is apparent with depth, but this is in a disjointed, irregular manner and the impression of horizontal layering is not readily apparent. The profile indicates a number of the lateral interruptions, which might indicate faulting. This resistivity profile is consistent for the traverse along the centre-line and also the traverse along the spillway alignment.

The various strata identified within the geological profile on the left flank are described in more detail below. For detailed description of the shallow soil strata, reliance is placed on the test pits, while for the deeper soil horizons and the underlying bedrock, the information is derived from the boreholes. The geological profile comprises;

- Topsoil,
- Colluvium,
- Colluvium that has been altered by pedogenic action,
- Alluvium or reworked terrace gravels,
- Bedrock, comprising variable combinations of mudstone, siltstone and sandstone.

The upmost **topsoil** horizon is described as dry, brown, medium dense occasionally loose or even dense, blocky or micro-blocky structure or even shattered occasionally, with occasional burrows or pinholes, otherwise intact silty sand. Roots are typically found. The thickness varies between 0.2 m and 0.4 m.

The general **colluvial material** is described as dry, reddish to orange brown, medium dense to dense, occasionally very dense, intact, slightly clayey, silty sand. In places this horizon might contain minor fine calcrete nodules as well as roots. Minor pinholes are recorded on occasion. In places a minor fraction of fine or medium, angular to sub-rounded gravels is recognised. Only if the presence of the pedogenic nodules is particularly minor is this material considered as 'colluvium'; should the pedocrete development be significant then these soils would be considered as part of the underlying horizon. Thickness varies between 0.2 m and 0.45 m.

A colluvial soil stratum with significant **pedocrete** development is identified. These materials comprise slightly moist, dark to reddish brown or orange brown / orange, mottled whitish, intact, slightly clayey silty sand (i.e. as per the above colluvium), with scattered calcrete accretions that vary between powder calcrete to honeycomb calcrete, and calcrete nodules. In limited instances,

the stratum contained both calcrete as well as ferricrete nodules. In test pit LC11 the ferruginised sand horizon approaches hardpan ferricrete and comprises very dense silty to sandy (gravel-sized) nodules. The overall consistency varies between dense and very dense. In places distinction can be made between an upper horizon of medium dense to dense consistency, with minor or macro pinholes, and a lower horizon described as dense to very dense. In one instance this stratum was noted to contain sub-rounded, medium gravels of hard rock quartzite. Horizon thickness varies between 0.9 m and 1.45 m.

Test pit LC10 on the extreme upper left flank terminated in calcrete-cemented, clayey, silty sand with loosely-packed, medium and coarse, sub-rounded quartzite gravels. This is the only test pit that seemingly intersected the **gravel horizon**. The boreholes, however, confirm this horizon to extend to all parts of the left flank. Although described as alluvium it is considered more likely to see this deposit as representing reworked terrace gravels. This gravel stratum is encountered at depths between 1.28 m and 5.45 m. The stratum thickness varies between 1.25 m and 5.05 m. Broadly this gravel layer is most well developed on the lower flank areas, but is intersected at depth across the entire flank. This transported gravel horizon is directly underlain by bedrock.

A single occurrence (test pit LC09) was recorded where a lower soil horizon of **uncertain origin** (i.e. mixed origin) was noted at a depth between 1.2 m and 2.4 m, i.e. a minimum thickness of 1.2 m. This material comprises slightly moist, reddish brown, very stiff, intact clayey silt.

The rockhead is encountered at a depth varying between 4 m and 7.7 m.

Bedrock comprises a succession of sandstones and mudstones in varying proportions. Horizons of mudstone, or sandstone are recognised, as well as strata where the mudstones / sandstones are interbedded. The boundaries of these lithological changes have not been confirmed with absolute certainty; partly because the boreholes do not intersect all changes, but also due to the often-gradational nature of these variations. It is further expected that significant lateral variation will characterise the strata, and that the horizons are not necessarily laterally continuous. From the limited borehole intersections of traceable contacts, it would appear that the strata dip into the flank at shallow angles of 4° to 5°.

The bedrock is characterised by pervasive weathering, and as a rule the rock mass is weathered throughout.

Two boreholes (only one on the left flank) did however reveal unweathered rock at the base of the borehole. Borehole LC03 intersected unweathered mudstone at a depth of 15.16 m (approximate elevation 69 masl). The uppermost bedrock horizon either comprises mudstone or sandstone; characterised by a 'highly to completely' degree of weathering, to the extent that the rock is soft to very soft and in places is weathered to clay, or sand, depending on whether the rock is mudstone or sandstone. Generally, the profile is characterised by improving weathering with increasing depth; with a progressive change from highly / completely weathered rock at

surface to moderately or even slightly weathered rock at the borehole termination depths. At these depths the rock is described as 'hard rock'.

It is worth noting that while the unweathered mudstones classify as hard rock, these rocks are known to be susceptible to slaking, and will therefore rapidly deteriorate upon exposure to the atmosphere. Such propensity to slake will also be experienced within predominantly sandstone horizons, but where interbedded mudstone strata are present.

The generally expected shallow dip of the strata is further borne out by the discontinuities, which reflect the common occurrence of shallow joints dipping at 0° to 10°. This discontinuity set is considered to represent the bedding. Other prominent joints include very steeply dipping / sub-vertical joints (80° to 90°), and less commonly, joints dipping at angles between 40° and 60°. At shallower depths within the bedrock, the rock mass is typically characterised by the interbeds, which have weathered to clay, or sand. Commonly, the drilling within these weak rocks is characterised by notable material losses; which are assumed linked to these weathered interbeds of clay / sand. Even if not lost ('washed'), the weathered interbeds are characteristically weaker than the surrounding material.

5.2.2 River section

The summarised geological profile within the river section, as revealed by test pits and boreholes, is presented in **Table 5.3** and **Table 5.4**, respectively. A measure of overlap is considered in these summary tables, hence the seeming repetition.

TP no	Topsoil; loose to medium dense or dense, silty to medium sand	Colluvium; medium dense or dense, silty sand	Colluvium / partly pedogenic; loose to medium dense / dense	Gravels / cobbles in sand matrix, overall loose to medium dense / very dense; Mixed origin	Alluvium; very dense, silty clayey sand
LC02	0 – 0.3	0.3 – 1	1 – 1.95	1.95 – 2.75+	
LC03	0 – 0.3	0.3 – 1.15	2.05 – 2.4+	1.15 – 2.05	
LC04	0-0.3			0.3 – 0.9	0.9 – 1.35+
LC05	0 – 0.3			0.3 – 2.25+	
LC12	0-0.2			0.2 - 2.35+	

The resistivity profile within the central section is characterised by a prominent resistant layer at surface, extending to an estimated depth of 5 m - 10 m. This horizon was considered to represent a measure of cementation within the upper soil horizon. Beneath this surface 'resistor' the profile is characterised by 'conductors'. Further layering in this regard is not readily apparent, and these conductor values are consistent with weathered rock.

BH no	Colluvium; slightly clayey, silty sand	mixed origin; gravels in	Mudstone; highly to completely weathered, soft to very soft rock	Mudstone' slightly to moderately weathered, soft to medium hard rock	Mudstone; unweath'd, hard rock	Interbedded mudstone / sandstone; highly to moderately weathered, generally medium hard rock	Sandstone; highly (to completely) weathered, hard (soft / to sand) rock	Sandstone; moderately weathered, hard rock
LC BH02	0 – 2.65	2.65 – 7.7	7.7 – 9.75			9.75 – 14.15	15.15 – 19.33	19.33 – 20.45
LC BH03	0 – 1.28	1.28 – 4.05			15.16 – 20.43	4.05 - 12		12 – 15.16
LC BH04	0 - 2	2 – 3.25		10.95 – 13.3	13.3 – 15.04+		3.25 – 7.5	7.5 – 10.95
LC BH01	0-0.8	0.8 – 2.7	4.55 – 10.94	13.1 – 15.01+			2.7 – 4.55 10.94 – 13.1	

Table 5.4: River section, summarised borehole profiles (depths in metres)

The geological profile within the central portion is characterised by the following strata;

- Topsoil,
- Colluvium,
- Colluvium that is altered by pedogenesis,
- Gravel soils, considered to be of mixed origin (reworked terrace gravels),
- Occasional / rare alluvial stratum, and
- Bedrock

Plate 5.3: River section view, looking towards right flank (test pit LC03 in foreground)

The upper **topsoil** horizon covers the entire central section. This horizon is typically a fairly consistent 0.3 m thick. The topsoil comprises silty sand and at the time of the test pitting was typically described as dry, with consistency varying between very loose and medium dense. Occasionally the material is dense. Roots are generally present.

The underlying horizon of **colluvium** was intersected in test pits LC02 and LC03. The colluvial material comprises silty sand, or slightly clayey silty sand. The moisture content at the time was described as slightly moist, and the consistency as medium dense or dense. Pinholes were recognised in the structure. Roots are present. This colluvium is not present across the entire footprint in the river section and is likely patchy. Where present, the thickness varies between 0.7 m and 0.85 m.

Distinction is made between the colluvial material described above, and colluvium which is exhibits evidence of some **pedogenic** alteration. This material is also only evident in test pits LC02 and LC03 and is therefore not developed across the entire footprint. The material is described as slightly moist, reddish brown to light brown, loose to medium dense or dense, silty sand with ferricrete nodules or honeycomb calcrete with calcrete nodules. The thickness of this patchy horizon varies up to 0.9 m.

The stratum of **reworked terrace gravels** is recognised across the entire footprint. These materials comprise a coarse fraction of gravels or cobbles of very hard rock quartzite with a matrix of silty to fine sand. The gravels are generally medium to coarse in size, and typically rounded or sub-rounded. The relative abundance of the coarse and fine fractions varies; in places the coarse fraction is tightly packed, i.e. clast-supported but in other strata the matrix dominates, i.e. matrix-

supported, and characterised by occasional cobbles / gravels. The overall consistency varies between loose and medium dense or dense or very dense. Occasionally pinholes are recognised within the stratum. Horizon thickness typically varies between 0.6 m and 0.9 m but may be thicker; in the case of test pit LC12 the total thickness of this stratum is greater than 2 m. The boreholes confirm total thickness of this gravel stratum to vary between 1.25 m and 5 m. In the case of test pit LC12, two horizons are recognised; an upper horizon that is predominantly sand with occasional coarser fraction, and a lower horizon where the coarser fraction is dominant.

Sandy **alluvium** was recognised in only one places. Test pit LC04 intersected alluvial silty, clayey sand between depths between 0.9 m and 1.35 m. This sandy stratum was described as very dense.

The deeper **bedrock** profile within the river section is mainly confirmed by borehole LC BH04, but other boreholes which confirm the lateral continuity of these horizons include LC BH01. Rockhead is intersected at depths between 2.7 m and 3.25 m (elevations of 78.57 and 80.66 masl, for boreholes LC BH04 and LC BH01, respectively). Bedrock comprises interbedded sandstone and mudstone horizons. In borehole LC BH01, drilled on the lower right flank, bedrock predominantly comprises mudstone strata with subordinate interbedded sandstone horizons. In LC BH04 the uppermost horizons, extending from the rockhead at a depth of 3.25 m to a depth of 10,95 m, i.e. with a thickness of 7.7 m, the bedrock predominantly comprises sandstone with minor mudstone interbeds, while below 10.95 m depth the rock is predominantly mudstone but with minor sandstone interbeds.

The rock mass is characteristically highly weathered, improving with increasing depth, and unweathered mudstone is intersected at a depth of 13.3 m (LC BH04). Borehole LC BH01, in contrast, shows no improvement in weathering and the rock mass is highly weathered throughout – to a depth of at least 15 m. These weathered rocks generally comprise soft to medium hard rock. The uppermost strata may be very soft rock in places. In addition, certain strata tend to hard rock; typically, the sandstone horizons at depth where highly weathered. Where unweathered mudstone is intersected this also tends to hard rock in places.

It must be noted that the mudstones in particular are susceptible to slaking, i.e. will rapidly disintegrate upon exposure to the elements. This phenomenon will also affect the sandstone beds where interbedded mudstone lenses of laminations occur. Even rock that appears as hard rock will therefore disintegrate on exposure. This characteristic holds implications for foundation excavations and treatment and is discussed in more detail in Section 6.1.3.

Up to four discontinuity sets are recognised within the rock strata, although some horizons only see one or two sets. Shallow dipping (10°) discontinuities are ubiquitous and represent the bedding planes. Other common joint orientations include moderately steep joints (dipping 50° to 60°) and sub-vertical joints (80° to 90°). Joint surfaces are commonly smooth. Joint infill material

is rarely recorded, and generally only staining of the surfaces might be noted. In terms of joint infill, however, it is pertinent to note the occurrence of horizons that are occasionally weathered to clay, particularly within the mudstone horizons. Also relevant are the material losses, particularly within the upper horizons, where these are ascribed to wash-out of very soft rock interbeds.

5.2.3 Right flank

Only limited investigation points were carried out on the right flank. A single borehole (LC BH01) is complimented by one test pit (LC02). The limiting factor in this regard was the accessibility due to the thick bush. The geological profiles are summarised below in **Table 5.5** and **Table 5.6**. Nearby borehole and test pit profile summaries are included in these tables for greater clarity. The geological longitudinal section is presented in Drawing 112546-GEO-DRG-CC-002A.

Results from this borehole (LC BH01) have been incorporated into the above section on the geological profile in the river section (Section 5.2.2) but is incorporated here in the context of the right flank.

TP no	Topsoil; loose to medium dense or dense, silty to medium sand	Colluvium; medium dense or dense, silty sand	Colluvium / partly pedogenic; loose to medium dense / dense	Gravels / cobbles in sand matrix, overall loose to medium dense / very dense. Mixed origin	Alluvium; very dense, silty clayey sand
LC02	0 – 0.3	0.3 - 1	1 – 1.95	1.95 – 2.75+	
LC04	0-0.3			0.3 – 0.9	0.9 - 1.35+
LC05	0-0.3			0.3 – 2.25+	

Table 5.5: Right flank, summarised test pit profiles (depths in metres)

Table 5.6: Right flank, summarised borehole profiles (depths in m)

BH no	Colluvium; slightly clayey, silty sand	Alluvium / mixed origin; gravels in sand matrix	Mudstone; highly to completely weathered, soft to very soft rock	moderately weathered,	Mudstone; unweath'd, hard rock	Interbedded mudstone / sandstone; highly to moderately weathered, generally medium hard rock	Sandstone; highly (to completely) weathered, hard (soft / to sand) rock	Sandstone; moderately weathered, hard rock
LC BH04	0 - 2	2 – 3.25		10.95 – 13.3	13.3 – 15.04+		3.25 – 7.5	7.5 – 10.95
LC BH01	0 – 0.8	0.8 – 2.7	4.55 – 10.94	13.1 – 15.01+			2.7 – 4.55 10.94 – 13.1	

The geological profile is characterised by the following horizons;

- Topsoil
- Colluvium
- Colluvium partly altered by pedogenesis
- Reworked terrace gravels, overlying
- Bedrock.

The upper **topsoil** horizon is expected to cover the entire flank. On the lower flank area this horizon is 0.3 m thick. The topsoil comprises dry, loose to medium dense silty sand. Roots are generally present.

The underlying horizon of **colluvial material** comprises silty sand. The moisture content at the time was described as slightly moist, and the consistency as medium dense. Pinholes were recognised in the structure. Roots are present. Thickness is 0.7 m.

An underlying **horizon of colluvium displaying some pedogenic** alteration occurs at depths between 1 m and 1.95 m. The material comprises slightly moist, reddish brown to light brown, loose to medium, silty sand with ferricrete nodules.

The stratum of **reworked terrace gravels** was intersected at depths between 1.95 m and the base of the test pit at 2.75 m (minimum thickness 0.8 m). The test pit was terminated due to the ravelling and undercutting, and the true thickness might be greater. It is not confirmed whether this horizon extends across the entire right flank, or whether it thins out on the upper slope areas. In test pit LC02 these gravels and cobbles are tightly packed. The borehole (LC BH01) indicates a thickness of 1.9 m.

Bedrock is intersected by borehole LC BH01 at a depth of 2.7 m (elevations 80.66 masl). Bedrock comprises interbedded sandstone and mudstone horizons; predominantly mudstone strata with subordinate interbedded sandstone horizons.

The rock mass is characteristically highly weathered, and shows no improvement in weathering– to a depth of at least 15 m. These weathered rocks generally comprise soft to medium hard rock. The uppermost strata may be very soft rock in places. In addition, certain strata tend to hard rock; typically, the sandstone horizons at depth where highly weathered.

It re-iterated that the mudstones in particular are susceptible to slaking, i.e. will rapidly disintegrate upon exposure to the elements. This phenomenon will also affect the sandstone beds where interbedded mudstone lenses of laminations occur. Even rock that appears as hard rock will therefore disintegrate on exposure. This characteristic holds implications for foundation excavations and treatment and is discussed in more detail in Section 6.1.3.

Generally, two or three discontinuity sets are recognised within the respective rock strata. Shallow dipping $(0^{\circ} - 10^{\circ})$ discontinuities are ubiquitous and represent the bedding planes. Other common joint orientations include moderately steep joints (dipping at 70°) and sub-vertical joints (80° to 90°). Joint surfaces are commonly smooth. Joint infill material is rarely recorded, and generally only staining of the surfaces might be noted. Horizons are recognised where the rock is weathered to clayey sand, or very soft rock in the case of the uppermost sandstone horizon.

5.2.4 Reservoir basin

Test pits were excavated within the reservoir area, primarily to confirm potential for sourcing suitable materials for embankment construction. Access was severely restricted and only three test pits were excavated (numbered LC20, LC22 and LC23), along a track that traverses the basin. Test pit positions relative to the dam footprint are shown on Drawing 112546-GEO-DRG-CC-001.

Geological profiles within these test pits are summarised below (**Table 5.7**). The test pits excavated on the dam footprint are also relevant to the description of the soils to be encountered within the general reservoir, but reference is made to the descriptions in the sections above (Sections 5.2.1 to 5.2.3).

TP no	Topsoil; medium dense to dense, silty sand	Colluvium; dense, silty sand	Colluvium / partly pedogenic; dense / very dense silty sand, ferruginised, plus ferricrete and calcrete nodules	Gravels / cobbles in sand matrix, Overall very dense to medium dense. Reworked terrace gravels
LC20	0-0.3		0.3 – 1.95	1.95+
LC22	0 – 0.25	0.25 – 0.55		0.55 – 2.4+
LC23	0 – 0.25			0.25 – 2.25+

Table 5.7	Bocorvoir area	cummaricod	apploaigal	toot nit	nrofilog	(donthe in m)	•
Table 5.7.	Reservoir area,	Summanseu	geological	test pit	promes	(uepuis in in)	

The typical soil profile within the reservoir area comprises;

- Topsoil,
- Colluvium,
- Colluvium that is partly pedogenic, and
- Reworked terrace gravels / gravelly soils of mixed origin.

The upper **topsoil** stratum varies in thickness between 0.25 m and 0.3 m. These soils are described as dry, brow, medium dense sometimes tending to dense, intact to blocky, silty sand. Roots, i.e. organic material, are typically present. Occasionally these soils are pinholed.

Colluvium is not uniformly encountered within the reservoir footprint. Where present, the material comprises dry, pale orange, dense, silty sand. In test pit LC22 this horizon is 0.3 m thick.

Material of **mixed colluvial and pedogenic origin** is recognised in test pit LC20, although the reworked terrace gravels intersected in LC22 also show calcrete accretion. The profile exposed in test pit LC20 displays quite variable parent material as well as variable pedocrete development. Within an upper stratum (0.3 - 0.9 m depth) the material comprises dense, ferruginised sand with minor fine ferricrete nodules, this is underlain (depths 0.9 to 1.95 m) by very dense ferruginised sand that contains both ferricrete nodules as well as irregular calcrete accretions. The test pit was terminated in material that comprised this ferruginised sand, but which also included quartzite gravels and further tended to hardpan ferricrete in places.

The horizon considered to represent **reworked terrace gravels** is variably developed. Thickness varied between and at least 2 m. These deposits are not uniform and in places some stratification is noted. Essentially, this material comprises slightly clayey, silty sand (matrix) with a coarser fraction comprising sub-rounded to sub-angular gravels and occasional boulders. The overall consistency is medium dense in horizons where the sandy matrix predominates.

None of the test pits within the reservoir footprint intersected **bedrock**.

5.3 Material properties

5.3.1 Foundation Indicator results

Foundation Indicator results, i.e. combined grading analyses including sieve and hydrometer analyses, as well as Atterberg constants, are summarised below in **Table 5.8**.

Test	Donth	Material	Soil composition				Atterberg limits				LS		Unified	AASHTO
pit no		type	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	GM	LL (%)	PI (%)	WPI (%)	(%)	Activity	Class.	class.
	Colluvium													
LC03	0.3 – 1.15	Colluvium	1	35	62	2	0.61	15	4	4	2.0	4.0	SC-SM	A – 4
LC03	0.3 – 2.05	Colluvium	0	41	58	1	0.56	15	3	3	1.5	-	SM	A – 4
					Co	lluvium	, partly	pedog	genic					
LC02	1.0 – 1.95	Colluvium with fine FeO nodules	0	63	36	1	0.3	21	7	7	3.5	-	CL	A – 4
LC06	0.5 – 1.65	Colluvium + part pedogenic	0	53	45	2	0.31	32	18	17	9.0	-	CL	A – 6

Test	Denth	Matarial	Soil composition				Atterberg limits			LS		Unified	AASHTO	
Test pit no	Depth (m)	Material type	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	GM	LL (%)	PI (%)	WPI (%)	(%)	Activity	Class.	class.
LC08	0.5 – 1.5	Colluvium + part pedogenic	0	58	39	3	0.76	26	12	12	6.0	-	CL	A – 6
LC09	0.4 – 0.85	Colluvium with fine FeO nodules	0	57	43	0	0.21	37	19	19	9.5	-	CL	A – 6
LC09	0.85 – 1.2	Colluvium + part pedogenic	0	18	34	48	1.78	30	18	8	9.0	-	SC	A – 2 – 6
LC10	1.0 – 1.6	Colluvium + part pedogenic	0	62	36	2	0.31	29	15	14	7.5	-	CL	A – 6
LC11	0.5 – 1.5	Pedogenic	1	22	37	40	1.68	31	10	4	5.0	10.0	SC	A – 2 – 4
LC20	0.9 – 1.95	Pedogenic	0	64	32	4	0.33	39	20	18	10.0	-	CL	A – 6
		-		М	ixed or	igin (rev	worked	terrad	e grav	vels)	-			-
LC04	0.3 – 1.35	Terrace gravels	1	32	57	10	0.77	17	7	6	3.5	7.0	SC-SM	A – 2 – 4
LC05	0.3 – 1.3	Terrace gravels	0	30	67	3	0.77	15	5	4	2.5	-	SC-SM	A – 2 – 4
LC05	1.3 – 2.75	Terrace gravels	0	8	39	53	2.11	49	20	6	10.0	-	GM	A – 2 – 7
LC07	0.9 – 2.0	Terrace gravels	0	51	49	0	0.38	25	11	11	5.5	-	CL	A – 6
LC09	1.2 – 2.4	Mixed Origin	4	62	28	6	0.38	39	18	16	9.0	4.5	CL	A – 6
LC23	0.5 – 2.0	Terrace gravels	1	34	61	4	0.59	19	7	4	3.5	7.0	SC-SM	A – 2 – 4
	Leç	gend GM	=	:	Gra	ding mo	odulus							
		LL	=	:		uid Limi								

ΡI = Plasticity Index

WPI Weighted Plasticity Index =

> = Linear Shrinkage

Activity =

LS

Activity of the soil according to Van der Merwe's 1964 method

No samples of the topsoil were tested, as it was considered that the topsoil would be stripped from the footprint due to the organic content (i.e. presence of roots) and would not be a key element in construction.

The colluvial soils primarily comprise silty sand; with the sand fraction of approximately 60% and the silt fraction between 35% and 40%. Clay and gravel fractions are negligible; up to 1% and 2%, respectively. Due to the negligible clay fraction the Liquid Limits (LL) as well as the Plasticity Index (PI) values are very low (15%, and 3% to 4%, respectively). The very low PI values further result in identical Weighted PI³ values on account of the high fraction passing 0.425 mm. These colluvial materials might therefore be considered to exhibit very low plasticity (almost non-plastic).

Where the **colluvial soils also are associated with evidence of pedogenic action**, these soils predominantly comprise sandy silt, where the dominant silt fraction is typically approximately 60% and the lesser sand fraction varies between 35% to 45%. The clay fraction is typically zero, and the gravel fraction is also negligible (only up to 3%). While generally consistent, these materials also exhibit some wide variability which is likely ascribed to variable pedocrete development. Some of these soils are gravelly (40% to 50%), with sand and silt fractions at 35 – 40%, and approximately 20%, respectively. The clay fraction is constant at zero. The Plasticity Indices (PI's) vary between 10% and 20%, i.e. maybe considered to be moderate. Occasional lower values are recorded. Because of the variable gradings, the Weighted PI values show a wider spread; between 4% and 20%. The Liquid Limit values generally vary between 20% and 40% (indicating soils with low to intermediate plasticity), while the Linear shrinkage values vary between 3.5% an 10%, i.e. low to moderate values.

The gravel soils are considered under the umbrella of '**reworked terrace gravels**' but these materials are not entirely uniform and significant variability is evident. Importantly only the finer fraction was submitted for testing, i.e. the coarse fraction comprising cobbles and boulders, as well as the gravels were not included in the test samples. The finer fraction of these soils generally comprises silty sand, where the sand fraction is between 50% and 70%, and the silt fraction is typically approximately 30 but occasionally up to 50%. The clay fraction is commonly zero but might be up to 4%. In the context of the selective sampling the gravel fraction is not representative of the bulk sample but was recorded up to 40 - 50%. It has been stated previously that this stratum is, in any event, not uniform. Considering the Atterberg constants, the Liquid Limit varies between 15% and 50% illustrating low to intermediate plasticity, the Plasticity Index ranges between 5% and 20%, i.e. low to moderate values, and the Linear Shrinkage varies between 2.5% and 10%, also considered low to moderate.

5.3.2 Physical properties

Relative densities for selected samples are summarised below in **Table 5.9**. Moisture contents are summarised in **Table 5.10**.

³ A short note regarding PI versus Weighted PI; The Weighted Plasticity Index (WPI) is defined as the value of the plasticity index (PI) times the % passing the 425 micron sieve (0.425 mm sieve), i.e. the Weighted PI is representative of the PI for the whole sample.

Test pit	Material type	Depth (m)	Origin	Relative density
LC03	Silty sand	0.3 – 2.05	Colluvium	2.600
LC09	Sandy silt	0.4 – 0.85	Colluvium, part pedogenic	2.580
LC06	Sandy silt	0.5 – 1.65	Colluvium, part pedogenic	2.560
LC04	Silty sand with gravel	0.3 – 1.35	Terrace gravel	2.570

Table 5.9: Summarised relative density values

Table 5.10: Summarised moisture content results

Test pit no	Material type	Depth (m)	Origin	Moisture Content
LC04	Silty sand with gravel	0.3 – 1.35	Terrace gravel	6.1
LC23	Silty sand	0.5 – 2.0	Terrace gravel	5.1
LC06	Sandy silt	0.5 – 1.65	Colluvium, part pedogenic	12.4
LC08	Sandy silt	0.5 – 1.5	Colluvium, part pedogenic	8.3
LC09	Sandy silt	1.2 – 2.4	Mixed Origin	17.3
LC20	Sandy silt	0.9 – 1.95	Pedogenic	10.9

5.3.3 Compaction

Summarised Proctor compaction results are presented in Table 5.11.

Table 5.11:	Summarised	Proctor	compaction results
-------------	------------	---------	--------------------

Test pit no	Material	Depth (m) Origin		Proctor density (kg/m³)	o m c (%)
LC03	Silty sand	0.3 – 2.05	Colluvium	1857	11.1
LC06	Sandy silt	0.5 – 1.65			18.9
LC08	Sandy silt	0.5 – 1.5 Colluvium, part pedogenic		1759	17.8
LC11	Silty sandy gravel	0.5 – 1.5	Pedogenic	1522	21.7
LC20	Sandy silt	0.9 – 1.95	Pedodenic		22.6
LC09	Sandy silt	1.2 – 2.4	Mixed Origin	1617	23.8
LC23	Silty sand	0.5 – 2.0	Terrace gravels	1826	11.7
LC04	Silty sand with gravel	0.3 – 1.35	Terrace gravels	1868	12.7

The **colluvium** horizon is characterised by a maximum dry density (Proctor compaction) of 1857 kg/m³ with an optimum moisture content (omc) of 11%

Typically, the sandy silt of **colluvial** / **part pedogenic** origin exhibits maximum dry density (Proctor compaction) values in the range of 1617 to 1759 kg/m³, with optimum moisture contents (omc) between 18% and 24%. Where the pedogenic material is more variable and comprises silty, sandy gravel, the maximum dry density (Proctor compaction) is 1522 kg/m³ and an optimum moisture content (omc) of 22%.

The fine fraction of the **terrace gravels** possesses maximum dry density (Proctor compaction) values in the range of 1825 to 1868 kg/m³, with optimum moisture contents (omc) between 11% and 13%.

5.3.4 Shear strengths

Remoulded samples were subjected to shear box testing. The results are summarised below in **Table 5.12**.

Test pit no	Material type	Depth (m)	Origin	Maximum effective shear stress kPa	Apparent Friction Angle (°)	Moulded density (kg/m³)
LC3	Silty sand	03 – 2.05	Colluvium	36.5	18.3	1676
LC3	Silty sand	0.3 – 1.15	Colluvium	38.1	19.2	1693
LC3	Silty sand	0.3 – 2.05	Colluvium	35.4	20.2	1704
LC4	Silty sand with gravels	0.3 – 1.35	Terrace gravels	43.2	26.4	1722
LC6	Sandy silt	0.5 – 1.65	Colluvium, part pedogenic	41.6	21.4	1570
LC8	Sandy silt	0.5 – 1.5	Colluvium, part pedogenic	40.9	24.7	1634
LC9	Sandy silt	1.2 – 2.4	Mixed origin	32.8	23.3	1509
LC11	Silty sandy gravel	0.5 – 1.5	Colluvium, part pedogenic	33.9	20.2	14343
LC20	Sandy silt	0.9 – 1.95	Colluvium, part pedogenic	35.7	24.8	1596
LC23	Silty sand	0.5 – 2.0	Terrace gravel	33.4	19.2	1682

Table 5.12: Summarised drained slow shearbox test results

5.3.5 Permeability

The results of permeability tests on the soil samples are summarised below (**Table 5.13**). Results of water acceptance (Lugeon) tests are presented elsewhere (Section 6.3).

Hole no	Material	Depth (m)	Material origin	Permeability (cm/s)
LC04	Clayey, silty sand	0.4 – 1.35	Alluvium	3.16 x 10 ⁻⁶
LC03	Silty sand	0.3 – 2.05	Colluvium	1.84 x 10 ⁻⁵
LC03	Silty sand	0.3 – 1.15	Colluvium	2.31 x 10 ⁻⁵
LC06	Sandy silt	0.5 – 1.65	Colluvium, part pedogenic	4.11 x 10 ⁻⁷
LC08	Sandy silt	0.5 – 1.5	Colluvium, part pedogenic	3.72 x 10 ⁻⁶
LC11	Silty, sandy gravel	0.5 – 1.5	Pedogenic	1.88 x 10 ⁻⁶
LC20	Sandy silt	0.9 – 1.95	Pedogenic	2.62 x 10 ⁻⁷

Table 5.13: Lower Coerney, summarised permeability test results

The clayey, silty sand of **alluvial origin** exhibits a permeability of 3.16 x 10⁻⁶ cm/s.

The silty sand **colluvium** yielded permeabilities between 1.84×10^{-5} and 2.3×10^{-5} cm/s.

The **colluvium / part pedogenic** material is fairly variable, and this is reflected in the permeability results. The sandy silt material of **pedogenic origin** understandably proved to be the least pervious, with values ranging between 2.62×10^{-7} and 4.11×10^{-7} cm/s. Where the material is more sandy, or even coarser, the permeability was measured at 1.88×10^{-6} cm/s.

5.3.6 Dispersivity

Selected samples were subjected to a suite of tests to assess the dispersivity, including the Double Hydrometer, as well as the Pinhole Test and the Crumb Test. No single test is deemed entirely reliable in confirming the dispersivity of a soil, and for this reason a suite of tests is usually conducted. Results are summarised below in **Table 5.14**.

Hole no	Material type	Depth (m)	Material origin	Double hydro- meter (%)	Pinhole test	Crumb test	Sodiu m Adsorp -tion Ratio (SAR)	Extract- able Sodium Percent age (ESP)
LC03	Silty sand	0.3 – 2.05	Colluvium	40.13	ND3	Grade 2	7.22	9.63
LC03	Silty sand	0.3 – 1.15	Colluvium	35.97	ND3	Grade 2	6.71	9.01
LC06	Sandy silt	0.5 – 1.65	Colluvium, part pedogenic	43.26	ND2	Grade 3	6.92	9.26
LC04	Silty sand	0.3 – 1.35	Terrace gravels	48.3	ND2	Grade 2	5.92	8.03

Table 5.14: Lower Coerney, summarised dispersivity test results

For the double hydrometer, the percentage dispersion results for all materials vary between 35% and 50% which is considered to represent an intermediate degree of dispersion (ASTM D4221, 2006).

The Pinhole Test results vary between ND2 and ND3, i.e. between non-dispersive and intermediate dispersivity (after Sherard, 1976).

The Crumb Test results alternated between grade 2 and Grade 3, i.e. between slight and moderate reactions (after Emerson, 1964).

In terms of the chemical tests, both the SAR (Sodium Adsorption Ration) as well as the ESP (Exchangeable Sodium Percentage) values indicate an 'intermediate' degree of dispersion, after Harmse (1980).

5.3.7 Rock material strengths

Opportunities for obtaining rock samples suitable for Uniaxial Compressive Strength (UCS) testing were extremely limited. Apart from the sample length requirements, which were at odds with the generally broken nature of the cores, the low strengths of these weak rocks were considered a major hurdle in sample preparation and the chances of the cores surviving the machining process were unlikely. As an alternative, selected core pieces were subjected to Point Load Strength (PLS) Testing. Furthermore, as a way around the limited number of samples, tests from both Lower Coerney as well as Upper Scheepersvlakte boreholes are considered jointly here. These results are presented below (**Table 5.15**).

The difficulties of obtaining accurate rock material strengths for very weak material are acknowledged, but from the above it is evident that the rocks are very weak. Assuming a typical conversion factor of 24 implies that these rocks have the equivalent uniaxial compressive strength values up to 1 MPa, and commonly less than 1 MPa.

BH No	Depth (m)	Material description	Test type	I _{s(50)} МРа
LC1	5.90	Sandstone, highly weathered, fine-grained	axial	0.01
LC2	10.04	Sandstone, highly weathered, coarse-grained	axial	0.05
LC4	6.38	Sandstone, highly weathered, coarse-grained	axial	0.01
US1	10.85	Sandstone, highly weathered, medium to fine- grained	diametral	0.06
US1	10.85	Sandstone, highly weathered, medium to fine grained	diametral	0.09
US5	2.83	Sandstone, highly weathered	axial	0.03
US4	8.74	Siltstone, highly weathered	diametral	0.03
US4	8.74	Siltstone, highly weathered	axial	0.07
LC2	12.92	Mudstone, unweathered	diametral	0.1
LC3	19.80	Mudstone, unweathered, carbonaceous	diametral	0.03
LC3	15.36	Mudstone, unweathered	diametral	0.03
LC3	19.80	Mudstone, unweathered, carbonaceous	axial	0.11
LC4	14.85	Mudstone, unweathered, carbonaceous	axial	0.09

Table 5.15: Summarised Point Load strengths

6 Geotechnical considerations

The nearby Scheepersvlakte Dam, completed in 1990, provides a view of the typical structure layout being considered for the Lower Coerney site (and also for that matter the Upper Scheepersvlakte alternative). In addition, the conditions experienced and recorded in some detail, permit some parallels to be drawn between the current options.

6.1 Site suitability and founding conditions

The site is characterised by gently sloping flanks and a relatively wide river section. Ignoring for a moment the founding conditions, this topography places certain limitations on the favoured structure. The biggest influence on the favoured structure type would however be the founding geology.

The key characteristics of the geological conditions that impact on the selection of the favoured dam type may be summarised as follows;

- Variable soil cover,
- In particular, the presence of a mixed gravels in sandy matrix horizon at depth, across the entire footprint, as well as the reservoir area, and
- Weak bedrock comprising sandstones and mudstones, characterised by pervasive weathering.

The availability of suitable construction materials is a further important consideration; this is discussed in more detail below (Section 6.5 Construction materials), but is briefly referred to in this section. These topics are individually addressed below.

6.1.1 Topography

In terms of the topography, the ratio of crest length to the maximum height of the dam is a common consideration in dam type selection. For this Lower Coerney site the ratio is roughly 30, which already points to an embankment dam.

6.1.2 Soil horizons

Cumulative thickness of the various soil strata varies between just less than 3 m to almost 8 m. Soil cover appears shallowest on the right flank, extending into the river section, while on the left flank soil thicknesses are generally between 7 m and 8 m. The soil thickness solely is therefore not reason alone to translate into selection of a specific structure. Of significance in terms of the soil strata, however, is the presence of a gravel horizon at depth. This horizon blankets the entire

site, including dam and spillway footprint as well as the basin area, and has implications for the dam type and also founding depths. Depths and thicknesses of this horizon are summarised below (**Table 6.1**). A view of in situ conditions as exposed with a test pit is shown below in **Plate 6.1**.

BH no	Depth; upper boundary	Elevation (masl)	Depth; lower boundary	Elevation (masl)	Horizon thickness (m)	Comment
LC BH01	0.8	82.56	2.7	80.66	1.9	Right flank Coarser fraction comprises 20-40%; finer matrix not recovered
LC BH02	2.65	86.50	7.7	81.45	5.05	Lower left flank. Matrix typically lost, material recovery 40-90% therefore coarse fraction abundant
LC BH03	1.28	83.02	4.05	80.25	2.77	Lower left flank Matrix mostly lost, recoveries 20 – 100%; conclude variable coarse fraction
LC BH04	2	79.82	3.25	78.57	1.25	River section Matrix lost, recovery 30 – 50%
LC BH05	4	98.01	7.2	94.81	3.2	Upper left flank / spillway crest Coarse fraction a relatively minor component
LC BH06	5.45	84.53	6.7	83.28	1.25	Left flank, mid spillway chute Coarse fraction generally minor component but concentrated at base of horizon.

Table 6.1: Gravel horizon, summarised depths and thickness (all metres)

When initially encountered in some test pits this gravel horizon was considered to represent an alluvial palaeo-channel, i.e. representative of an earlier river course, subsequently buried by younger sediments. On later reflection, with due consideration of the geological history and landscape evolution, and following completion of all the boreholes, this gravel horizon is considered more likely to represent reworked terrace gravels, rather than purely a palaeo-channel. The horizon is however not uniform. In general, the gravels and occasional cobble fraction are relatively minor, typically loosely packed components, and the silty sand matrix is dominant. In some instances, however, this gravel horizon is more 'concentrated', particularly on some parts of the lower flanks and within the current river section, and the coarser fraction, predominantly comprising gravels but also occasional cobbles and even rare boulders, is tightly packed, i.e. clast-supported. It is possible that within these lower elevations this concentration of the coarser fraction might be representative of palaeo-alluvial activity, i.e. at least partly represent palaeo-channels. On the upper flank area in particular, the coarse fraction is a minor component, and the fine fraction comprising silty sand dominates.

The significance of this stratum for the dam design is that these materials are potentially highly pervious, and in such cases would represent potential preferred seepage paths. This aspect, including the implications for excavation depths, as well as foundation treatment is discussed in more detail below.

Plate 6.1: The gravelly layer as exposed within a test pit (this view test pit LC22); the boundary indicated by the dotted line

Plate 6.2: Spoil from the same test pit, better illustrating the nature of the gravelly material.

6.1.3 Bedrock

As alluded to above, the soil horizons viewed in isolation do not represent the most decisive factor in determining the dam type. Considering the soil depths jointly with the bedrock conditions is however key in assessing the optimal dam type.

The gravelly horizon described above overlies the bedrock. As described above, the bedrock comprises a sequence of interbedded sandstones and mudstones, including fine grained silty sandstones. The degree of interbedding is variable throughout the sequence; certain strata would be either entirely sandstone or mudstone, but other horizons are recognised that they are either predominantly sandstone, with relatively minor mudstone interbeds, or vice versa. Aside from the lithological differences, the degree of weathering, together with the nature of the jointing are key influences on the overall bedrock conditions and therefore suitability as founding horizon.

Generally, the bedrock is characterised by pervasive weathering. For the most part the strata are highly weathered, i.e. the effects of the weathering are evident throughout the rock mass.

Typically, where the uppermost rock strata mainly comprise mudstones these are classified as highly to completely weathered, and where the uppermost bedrock horizon comprises sandstone these strata are generally highly weathered, although a thin layer of highly to completely weathered material is also recognised. The significance of the 'completely weathered' horizons is that these are approaching a soil in terms of appearance and behaviour. As a result, these upper sandstone strata comprise medium hard to very soft rock where completely weathered; even to sand in some instances. The upper mudrock horizons would generally comprise soft rock to very

soft rock. More importantly, in places, the weathering has produced clay layers that vary in thickness from as little as 40 mm to as much as 300 mm⁴. Where an improvement in degree of weathering was noted at depth it is possible to define the thickness of the highly weathered strata; varying between 4.25 m and 11.6 m. With the shallow boreholes on the left flank the base of the highly weathered horizon was not intersected, and even in borehole LC BH01 on the right flank the base was not recorded with the minimum thickness therefore 13.3 m. With only two exceptions where boreholes intersected unweathered rock at the base (boreholes LC BH03 and LC BH04, respectively), any observed improvement in the degree of weathering was only gradational – generally to 'moderate' weathering, or occasionally moderately to slightly weathered. In both the above cases, this unweathered rock comprised mudstone / carbonaceous mudstone, albeit with minor interbedded sandstone strata in LC BH04.

6.1.4 Suitable dam types

The impact of the above discussion on most suitable dam type may be summarised as follows;

- The flat topography favours an embankment dam.
- The soil cover on its own is not a limiting factor, but the underlying bedrock comprises weak rocks. No suitable founding for a mass concrete gravity structure would be defined within shallow depths. It follows that an embankment structure would be optimal in terms of the prevailing founding conditions.
- Although not discussed above (but elaborated on in Section 6.5), the availability of potential construction materials in proximity to the site would dictate that an earthfill embankment is favoured, rather than a rockfill structure.

6.2 Excavation depths

The various elements of the envisaged embankment structure have different founding requirements, and these are discussed below. The key elements are listed as follows;

- The embankment, with the impervious core and the outer shell zones considered separately,
- The conduit, including intake and outlet,
- The spillway.

⁴ Note these thicknesses are as recorded on the cores. These weak materials are however susceptible to being washed, i.e. lost, in the drilling process and the horizons thicknesses are not necessarily an accurate representation of actual in situ conditions.

Typical foundation requirements for an earthfill embankment may be summarised as follows;

- For embankment outer shell zones,
 - A minimum required foundation Deformation Modulus of 0.2 GPa
- For the cut-off trench,
 - A minimum required foundation Deformation Modulus of 2 GPa
 - In addition, the cut-off would be founded on material that would be deemed groutable.

6.2.1 Embankment shell zones

For the embankment shell zones, it is reasonable to assume that foundation excavations will comprise removal of a nominal 300 mm to 500 mm, primarily to ensure the upper, potentially organic-rich, potentially compressible topsoil stratum is removed.

6.2.2 Embankment cut-off

For the cut-off trench, focusing entirely on the geotechnical profile and not considering the hydraulic requirements, the interpreted minimum excavation depths for the respective boreholes are summarised below (**Table 6.2**). The presence of the gravel-sand horizon within the soil profile is worth mentioning in terms of the decisions regarding depth of cut-off trench excavations. It is recognised that this horizon represents a potential pervious layer, albeit likely variably and that some areas might not be as pervious as others. This gravel-sand layer at its deepest is almost 8 m below surface, but in places only extends to depths of 3 m or 4 m. Such depths are not considered excessive, and special treatment is not considered necessary. Considering the potential seepage, and that the depths are not limiting, it is recommended that the cut-off extend, as a minimum, to the base of this gravel-sand layer.

BH No	Excavation depth (m)	Elevation (masl)	Rockhead depth	Comments					
Left flank									
LC BH05	7.2	94.81	7.2	The principle of founding beneath the gravel layer implies an excavation depth of 7.2 m. However, this borehole is located on extreme upper flank area and cut-off depths of 7+ m are perhaps excessive. A shallower cut-off (say $3.5 - 4$ m) may be considered, but this would terminate the cut-off within this potentially pervious gravel stratum.					
LC BH06	6.7	83.28	6.7	Borehole was drilled on spillway chute alignment but is considered here to be indicative of mid-left flank conditions. Founding beneath gravelly stratum would imply depths of almost 7 m.					
LC BH02	7.8	81.35	7.7	Found at 7.8 m i.e. below gravel -sand stratum of reworked terrace gravels.					
LC BH03	4.6	79.70	4.05	Found below gravel horizon. Remove uppermost bedrock horizon (thickness 0.55 m) to get beneath very soft rock horizon. Might consider founding immediately beneath gravel soils, but rather remove uppermost horizon of very soft / soft rock / occasionally weathered to sand.					
			Rive	r section					
LC BH04	5.5	76.32	3.25	Possible to found at a minimum depth of 3.5 m but sandstone comprises very soft / soft rock and minor core losses recorded. Preferably found at a depth of 5.5 m.					
			Rig	ht flank					
LC BH01	3.5	83.32	2,7	Found within the upper, highly weathered sandstone stratum, but notably beneath the uppermost highly to completely weathered, very soft rock.					

Table 6.2:	Summarised	excavation	depths	for impervious	cut-off trench
	Summanseu	excavation	uepuis	ioi impervious	cut-on trench

Note that the geological conditions are evaluated in all boreholes on the assumption that the respective boreholes are representative of conditions for the embankment – even though the individual borehole might have been drilled for a different purpose or is offset from the centre-line.

6.2.3 Intake and outlet works

In general, the outlet works would comprise an intake structure, outlet pipes within a concrete encasement, and an outlet structure. Boreholes LC BH02 and LC BH03 were drilled at the intake and outlet positions respectively, while the conditions in the central portion of the conduit may be extrapolated from borehole LC BH04. The geological profiles are described above (Sections 5.2.2 and 5.2.1). Implications for the founding of these structures are summarised below (**Table 6.3**).

BH No	Excavation depth (m)	Elevation (masl)	Thickness of gravel sand stratum (m)	Rockhead depth	Comments
LC BH02 (intake)	2.7	86.45	5.0	7.7	Founding on gravel -sand stratum of reworked terrace gravels. SPT N-value = 43 at depth 2.64 m
LC BH03 (outlet)	1.3	83.00	2.7	4.05	Found on gravel-sand horizon. No SPT test.
LC BH04	2.0	79.82	1.25	3.25	Found at 2 m depth on gravel sand stratum. SPT N-value 66 at depth 1.95 m.

Table 6.3: Summarised excavation depths for outlet works

A Standard Penetration Test (SPT) was conducted in borehole LC BH02, at a depth of 2.64 m, i.e. within the horizon of reworked terrace gravels. On the face of it the (single) result of N = 43 suggest dense soils, with an associated allowable bearing capacity of approximately 200 kPa. Another SPT test in borehole LC BH04 yielded an N-value of 66 at a depth of 1.95 m, similarly suggesting allowable bearing capacities in excess of 350 kPa. Some caution must be attached to blindly accepting these values, due to the presence of medium to coarse gravels within the tested horizon and the uncertainty whether the test results are truly representative or might reflect skewed data from interception of these boulders / gravels.

A key element of founding of the outlet works (intake structure, conduit as well as outlet structure) would be the occurrence of highly variable conditions that might have implications in terms of foundation characteristics, notably the possibility of differential settlement. The reworked gravel-sand stratum is present over the entire footprint and in that sense the founding conditions might be considered relatively uniform, which would mitigate against the possibility of differential settlement. Note that the excavation depths (and founding levels) reflected above in Table 6.3 do not consider inlet and outlet design levels or conduit design gradient. Such optimisation will be carried out in the design phase and will have implications for final excavation depths within this gravel-sand stratum.

6.2.4 Spillway

Only two boreholes (LC BH05 and LC BH06) provide confirmation of the geological profile along the spillway alignment. Borehole LC BH05 is located at a position corresponding roughly with the spillway ogee, while borehole LC BH06 is located roughly midway along the chute. No borehole is located at the end of the spillway, but test pit LC12 exposed the upper soil profile.

It is assumed that the spillway ogee section will comprise a mass concrete, gravity structure. The spillway chute will have to be concrete-lined, as discussed below (Section 6.4).

The mass concrete gravity ogee spillway structure cannot be founded at depths shallower that 7.2 m, i.e. the structure cannot be founded on the soil horizons, but must be founded on the underlying bedrock as a minimum. Bedrock was intersected at a depth of 7.2 m, and comprises very soft to soft rock, predominantly mudstone with subordinate sandstone. The borehole was terminated at 10 m, and the extent to which the bedrock condition improves with depth is uncertain. The uppermost bedrock horizon should also be removed prior to concrete placement, in order to remove the weakest material. It should be noted that the mudstone will be susceptible to slaking; Excavation and foundation preparation cycles will have to allow for near-immediate protection of the exposed rock surfaces, typically by casting of a blinding layer immediately following cleaning of the rock surface.

For the remainder of the chute, the same principle will be followed for determination of the founding depths; i.e. that the soil strata must be removed and that the concrete-lining be founded on the underlying bedrock. In places this bedrock will comprise mudstone, and in other areas the rock will be sandstone.

At this stage there is no confirmation of actual bedrock conditions at the end of the spillway. It is however a reasonable assumption that underlying bedrock will comprise weak strata that would be susceptible to erosion. It goes without saying that appropriate energy dissipation must be incorporated at the end of the spillway lining, and that measures must be incorporated to prevent undercutting of the concrete.

6.3 Foundation permeability and foundation treatment

The chief concern regarding foundation permeability is linked to the presence of the gravel-sand horizon, which is known to be present across the entire dam footprint. If left 'untreated' there would be a risk of this stratum functioning as a 'buried channel' or preferential seepage path beneath the embankment. The consequences could then potentially be manifested in the form of uncontrolled seepage and the inability of the reservoir to fill and, in the worst case, internal erosion and failure.

Consideration of likely scenarios relating to seepage within the horizon of reworked terrace gravels has been addressed at a high level by GWA Consulting Hydrogeologists cc (see Appendices). This evaluation was also in the context of the potential for sub-surface seepage occurring in a northerly direction, that might be cut-off by the dam, and create future problems in terms of shallow water tables downstream of the dam. The key points of this evaluation can be summarised as follows;

- Groundwater hydraulic gradients are steep, with low permeability.
- The hydraulic gradients show sub-surface seepage in a southerly direction (downstream).
- With the filling of the reservoir it is expected that these gravels will become saturated over time. Actual flow rates are unconfirmed, but with the knowledge that these reworked terrace gravels are variable, it can be assumed that general seepage rates will be low, but zones of higher seepage flows cannot be excluded.
- With the dam cut-off extending through this gravel layer into the underlying bedrock, it can be assumed that the reservoir will not impact on the geo-hydrological regime downstream of the dam.

The indicated excavation depths for the cut-off (Table 6.2) have been defined on the basis of ensuring that this potential seepage path, represented by the gravel–sand stratum, is cut off.

Limited water pressure (packer) tests were carried out within the underlying bedrock to assess the rock permeability. These results are presented on the detailed borehole logs (Appendix B) and are summarised below (**Table 6.4**).

The results of the water acceptances tests in some boreholes indicate some significant losses. These instances are presumed to be associated with weathered zones within the rock mass that are typically associated with material losses. The occurrence of such losses is indicative of very weak material that is ground by the drilling action, and subsequently lost to the circulating drilling fluid. This assumed mechanism is supported by interpretation of the water acceptance test data; specifically, the relationship between the applied pressures and the measured water losses (after Houlsby, 1976). The significance of these losses lies in the possibility that they reflect the potential for erosion damage to the founding rock mass under conditions of seepage and high hydraulic gradients.

If the jointed founding rock mass was characterised by open joints with hard wall rock, for example, the foundation would be considered 'groutable', and foundation treatment comprising foundation grouting (compaction and/or curtain grouting) could be readily specified. In the case of these weathered, weak rocks, which evidently are susceptible to wash out, and are further characterised by interbedded mudstones, which in places are weathered to clays, the 'groutability' of the rock mass is more questionable.

BH No	Test section (depths in m)	Lugeon (UL) value	Comment
	7.5 – 10.97	64	Wash out. Weathered zones in mudrock likely origin
	11 – 13.97	12	Wash out. Ascribed to weathered zones which are associated with material losses
LC BH02	14 – 16.97	0	Tight
	17 – 20.45	35	Turbulent flow. Prominent weathered zone in the sandstone that is associated with prominent staining, and therefore assumed to represent a seepage path.
	4.5 – 7.65	0	Tight
	7.5 – 10.58	15	Wash out. No obvious link identified in the core logging.
LC BH03	10.5 – 12.59	1	Dilation / tight
LC DHU3	12.5 – 13.36	0	Tight
	15.5 – 18.59	0	Tight
	18.5 – 20.43	0	Tight
	4 – 7.78	0	Tight
LC BH04	7.5 – 10.94	13	Wash out. Ascribed to local highly weathered zones, associated with significant material losses.
	11 – 13.94	0	Tight
	13.5 – 15.04	0	Tight

Table 6.4: Summarised Water Acceptance (Packer) Test results

It is understood that no foundation grouting was carried out for Scheepersvlakte Dam.

6.4 Erodibility

The question of erodibility of these weak rocks has specific bearing on the spillway chute. Two shallow boreholes were drilled to investigate the ground profile in this area on the left flank, namely boreholes LC BH05 and LC BH06. No borehole was drilled at the end of the chute.

While steps for a detailed appraisal of the erodibility can be followed, some points of logic are pertinent;

- The soil horizons would offer no resistance to erosion and would clearly be washed away in the case of an earth channel. The silty to clayey sands extend to respective depths of 6.7 m and 7.2 m in the two boreholes. The basal soil stratum comprises the gravel-sand reworked terrace deposits and even this material is considered to be erodible.
- Within these boreholes the rockhead was intersected at these respective depths of 6.7 m and 7.2 m.
- The upper bedrock horizon either comprises completely weathered, becoming highly weathered sandstone or interbedded sandstone / mudstone, or highly and occasionally weathered mudstone with subordinate sandstone. Irrespective of the lithology, the bedrock comprises weak rock. The mudstones in particular are considered susceptible to slaking.

A rock mass exposed to the elements would therefore deteriorate over time as the mudstones, or mudstone interbeds, disintegrate (slake). Repetitive cycles of exposed rock disintegrating, and the resulting fine fraction being eroded means that any resistance to erosion is only temporary. The process would even affect a strong rock mass, and in the case of these already weak rocks, the slaking process would simply impact further on rock which is considered to be erodible.

From the above points, it is evident that an unlined spillway chute is not practical or feasible. A concrete lining of the entire length of the spillway chute is necessary in order to prevent erosion; as constructed for the Scheepersvlakte Dam.

There is at this stage, no confirmation of the geological profile at the end of the spillway. All information suggests conditions will be characterised by soil deposits – possibly of quite substantial thickness - overlying weak, erodible rocks. Consideration will have to be given to sufficient energy-damping at the end of the concrete chute, at the point where the water will be released into the river channel.

6.5 Construction materials

It has been stated above (Section 6.1) that the availability of suitable construction materials in proximity to the dam site is a major factor in considering the most suitable structure. Considering that the prevailing conditions favour an embankment dam, the following materials would be required;

- Embankment fill materials, including general fill and impervious core materials,
- Rip-rap for upstream slope protection,
- Concrete aggregates, including coarse aggregate, as well as sand (fine aggregate), for the concrete elements, including the concrete spillway chute, spillway ogee, intake, conduit as well as outlet works.
- Sand for use in filters.
- Other materials that would be required would include materials for roads construction. This aspect is not addressed.

6.5.1 Embankment fill materials

The existing Scheepersvlakte Dam comprises a homogeneous earthfill structure, with various filters, as recorded in the Completion Report (DWA, 1988). The structure includes a cut-off trench, but there is apparently no impervious core. The initial design envisaged a conventional zoned embankment with an impervious core, and shell zones of semi-pervious material. The shortage

of semi-pervious material within the basin, however, led to a change in design to a homogeneous embankment.

The following earthfill specifications (**Table 6.5**) were stated in the design report for Scheepersvlakte Dam (DWA, 1988).

	Grading ar	nalyses									
Sieve size		% passing									
Sieve Size	Maximum	Minimum	Mean								
4.75	100	45.7	89.8								
2.00	100	37.0	86.7								
0.425	99.2	29.2	80.9								
0.150	93.9	220	71.0								
0.050	70.0	10.8	46.3								
0.005	48.6	00	19.3								
0.002	40.7	0.0	16.9								
	Atterberg	limits									
	Maximum	Minimum	Mean								
Liquid limit (%)	43.0	20.0	34.2								
Plastic limit (%)	29.1	11.9	18.4								
Plasticity Index	25.0	4.0	15.8								
Linear shrinkage (%)	10.7	1.3	7.6								
	Compaction (S	itd Proctor)									
	Maximum	Minimum	Mean								
Maximum dry density (kg/m³)	1884	1542	1736								
Optimum moisture content (%)	24.2	10.8	16.3								
	Direct s	hear									
	Maximum	Minimum	Mean								
Angle of internal friction (°)	45.0	19.4	35.4								
Cohesion (kPa)	153.3	9.29	18.8								
	Triaxial s	shear									
	Maximum	Minimum	Mean								
Angle of internal friction (°)	44.8	23.6	31.7								
Cohesion (kPa)	40.0	0.0	15.5								
	Coefficient of permeability (cm/sec)										
	Maximum	Minimum	Mean								
	4.1 x 10 ⁻⁵	1.6 x 10 ⁻⁸	1.1 x 10⁻ ⁶								
	Relative d	ensity									
	Maximum	Minimum	Mean								
	2.75	2.50	2.65								

Table 6.5: Scheepersvlakte Dam, homogeneous earthfill specifications (DWA, 1988)

The proximity of the Scheepersvlakte Dam to this proposed Lower Coerney site means that certain lessons learnt would be of value to construction of the Lower Coerney dam.

The material properties confirmed in these investigations are tabulated below and compared to typical requirements for the main elements of a zoned earthfill structure, i.e. the impervious core (**Table 6.6**) and the outer shell zones (**Table 6.7**), respectively.

		Material types							
Parameter	Criteria	Alluvium	Colluvium	Colluvium / partly pedogenic	Pedogenic	Other			
Grading	>60% passing 0.425 mm sieve	29 to 97% (3)	94 – 95% (3)	45 – 98% (5)	40 – 91% (2)	85 - 89% (2)			
Clay %	10<%<30	0 to 1% (3)	0 to 1% (3)	0% (5)	0 to 1% (2)	0 to 4% (2)			
Liquid Limit %	30 <ll<60< td=""><td>17 to 49% (3)</td><td>15 to 19% (3)</td><td>21 to 37 % (5)</td><td>31 to 39% (2)</td><td>15 to 39% (2)</td></ll<60<>	17 to 49% (3)	15 to 19% (3)	21 to 37 % (5)	31 to 39% (2)	15 to 39% (2)			
Plasticity Index %	12 <pi<35< td=""><td>7 to 20% (3)</td><td>3 to 7% (3)</td><td>7 to 19% (5)</td><td>10 to 20% (2)</td><td>5 to 18% (2)</td></pi<35<>	7 to 20% (3)	3 to 7% (3)	7 to 19% (5)	10 to 20% (2)	5 to 18% (2)			
Linear Shrinkage %	4 <ls<10< td=""><td>3.5 to 10.0% (3)</td><td>1.5 to 3.5% (3)</td><td>3.5 to 9.5% (5)</td><td>5 to 10% (2)</td><td>2.5 to 9% (2)</td></ls<10<>	3.5 to 10.0% (3)	1.5 to 3.5% (3)	3.5 to 9.5% (5)	5 to 10% (2)	2.5 to 9% (2)			
Maximum Dry Density kg/m ³	1450 <mdd<1880< td=""><td>1868 (1)</td><td>1826 – 1857 (2)</td><td>1676 – 1759 (2)</td><td>1522 – 1739 (2)</td><td>1617 (1)</td></mdd<1880<>	1868 (1)	1826 – 1857 (2)	1676 – 1759 (2)	1522 – 1739 (2)	1617 (1)			
Optimum moisture content omc %	14 <omc<25< td=""><td>12.7 (1)</td><td>11.1 – 11.7 (2)</td><td>17.8 – 18.9 (2)</td><td>21.7 – 22.6 (2)</td><td>23.8 (1)</td></omc<25<>	12.7 (1)	11.1 – 11.7 (2)	17.8 – 18.9 (2)	21.7 – 22.6 (2)	23.8 (1)			
Shear Strength kPa	12 <kpa<24< td=""><td></td><td>33.4 to 38.1 (4)</td><td>40.9 to 41.6 (2)</td><td>33.9 to 35.7 (2)</td><td>32.8 (1)</td></kpa<24<>		33.4 to 38.1 (4)	40.9 to 41.6 (2)	33.9 to 35.7 (2)	32.8 (1)			
Friction angle	18<Ф°<30		18.3 to 20.2 (4)	21.4 to 24.7 (2)	20.2 to 24.8 (2)	23.3 (1)			
Permeability <i>k</i> cm/s	<1 x 10 ⁻⁴	3.16 x 10 ⁻⁶ (1)	1.84 x 10 ⁻⁷ to 2.31 x 10 ⁻⁷ (2)	4.11 x 10 ⁻⁹ to 3.72 x 10 ⁻⁸ (2)	2.62 x 10 ⁻⁹ to 1.88 x 10 ⁻⁸ (2)				

 Table 6.6: Summarised material properties and comparison against typical requirements (impervious core), after Badenhorst, 1988

Where numbers of samples are shown in brackets. Note also the stated maximum PI by Badenhorst (1988) is considered too high.

To facilitate easy comparison where material properties fall outside the broadly-stated objectives, the relevant cells in the above table (Table 6.6) have been highlighted.

The following comments summarise broad observations in respect of the suitability of the local materials for use in the impervious core;

In terms of the material grading, the clay contents are very low. This applies across the spectrum of materials on the footprint and the basin area. The percentages passing the

0.425 mm sieves typically show significant scatter, and although 'flagged' in the above table as non-compliant, for the most part, the gradings are compliant and only occasional anomalous values are recorded.

- Considering the Atterberg limits, the results again show some scatter, commonly reflecting results falling outside the requirement on the low side specifically, but at the same time the results show scatter extending into the 'acceptable' range.
- The standard Proctor compaction results show general compliance, but occasional values for the optimum moisture contents are too low.
- The shear strength data shows the respective materials all exhibit greater shear strengths than required, while the friction angles comply with the requirements.
- In spite of the almost non-existent clay fraction in all soil types, the measured permeabilities all show relatively impervious materials, well within the range required.

It would be pertinent to note lessons from construction of Scheepersvlakte Dam, notably in terms of the required moisture content (DWAF, 1992). As a result of the relatively high moisture requirements (for the homogeneous fill), coupled with the high clay content, construction difficulties were experienced. The high required optimum moisture contents also resulted in compaction problems.

		Material types							
Parameter	Criteria	Alluvium	Colluvium	Colluvium / partly pedogenic	Pedogenic	Other			
Grading	>40% passing 0.425 mm sieve	29 to 97% (3)	94 – 95% (3)	45 – 98% (5)	40 – 91% (2)	85 – 89% (2)			
Clay %	<10%	0 to 1% (3)	0 to 1% (3)	0% (5)	0 to 1% (2)	0 to 4% (2)			
Liquid Limit %	LL <30	17 to 49% (3)	15 to 19% (3)	21 to 37 % (5)	31 to 39% (2)	15 to 39% (2)			
Plasticity Index %	4< PI<12.5	7 to 20% (3)	3 to 7% (3)	7 to 19% (5)	10 to 20% (2)	5 to 18% (2)			
Linear Shrinkage %	0 <ls<7< td=""><td>3.5 to 10.0% (3)</td><td>1.5 to 3.5% (3)</td><td>3.5 to 9.5% (5)</td><td>5 to 10% (2)</td><td>2.5 to 9% (2)</td></ls<7<>	3.5 to 10.0% (3)	1.5 to 3.5% (3)	3.5 to 9.5% (5)	5 to 10% (2)	2.5 to 9% (2)			
Maximum Dry Density kg/m ³	1750 <mdd<2100< td=""><td>1868 (1)</td><td>1826 – 1857 (2)</td><td>1676 – 1759 (2)</td><td>1522 – 1739 (2)</td><td>1617 (1)</td></mdd<2100<>	1868 (1)	1826 – 1857 (2)	1676 – 1759 (2)	1522 – 1739 (2)	1617 (1)			
Optimum moisture content omc %	6 <omc<16< td=""><td>12.7 (1)</td><td>11.1 – 11.7 (2)</td><td>17.8 – 18.9 (2)</td><td>21.7 – 22.6 (2)</td><td>23.8 (1)</td></omc<16<>	12.7 (1)	11.1 – 11.7 (2)	17.8 – 18.9 (2)	21.7 – 22.6 (2)	23.8 (1)			
Shear Strength kPa	kPa<12		33.4 to 38.1 (4)	40.9 to 41.6 (2)	33.9 to 35.7 (2)	32.8 (1)			

 Table 6.7: Summarised material properties and comparison against typical requirements for outer shell zones (after Badenhorst, 1988)

		Material types						
Parameter	Criteria Alluvium Colluvi		Colluvium	Colluvium / partly pedogenic	Pedogenic	Other		
Friction angle	28<Ф°<38		18.3 to 20.2 (4)	21.4 to 24.7 (2)	20.2 to 24.8 (2)	23.3 (1)		
Permeability <i>k</i> cm/s	>1 x 10 ⁻⁴	3.16 x 10 ⁻⁶ (1)	1.84 x 10 ⁻⁷ to 2.31 x 10 ⁻⁷ (2)	4.11 x 10 ⁻⁹ to 3.72 x 10 ⁻⁸ (2)	2.62 x 10 ⁻⁹ to 1.88 x 10 ⁻⁸ (2)			

Where numbers of samples are shown in brackets.

As per the above table, the shading of the cells has been applied to highlight where the material properties are not fully compliant with the requirements for a typical outer shell zone.

A broad summary of the general material suitability for use in the outer shell zones can be presented as follows;

- The grading is generally satisfactory in that the fraction passing the 0.425 mm sieve is greater than 40%. Where the typically absent clay fraction is a difficulty for an impervious core, the negligible clay content favours use in these outer shell zones (but the important permeabilities must be noted).
- The Atterberg limits show some scatter, but some properties fall within specification. Some Liquid Limit values are too high, as are Plasticity Index values and some Linear Shrinkages.
- In terms of the compaction characteristics, the alluvial and colluvial materials are typically compliant, but where there is some pedogenic material present the dry densities may be too low, and the optimum moisture contents too high.
- As before the shear strengths are very high, i.e. even greater than required. Friction angles are typically too low.
- Very low permeabilities were recorded, and this is seemingly at odds with the grading analyses, in particular, the negligible clay contents.

By way of a general conclusion regarding the suitability of the local soils for use in embankment construction, specifically for the impervious core and outer shell zones, it is evident that further investigation of the various material sources would be required to accurately define specific borrow areas. The various soil types that might be considered show some scatter in material properties and better definition of the usable areas would be required, coupled with stringent field control and compliance testing. Current investigations were limited in extent and were further restricted to the dam footprint and limited points within the reservoir area. Greater coverage is necessary for follow-up investigations, and it might also be necessary to extend these beyond the confines of the reservoir.

6.5.2 Filter sands

Sands suitable for use in the various filter zones are not readily available in the general area of the proposed Lower Coerney site. This is also borne out by experiences during construction of the Scheepersvlakte embankment. No sources of natural sand for use in the filters could be identified. Initially, the manufactured crusher sand was used, but there were limitations due to the crusher being required to produce coarse aggregate. Subsequently, a number of options were explored whereby various sources of sands were mixed with crusher run from a number of commercial crushers. Such products were hauled from as far afield as Patterson, or the Uitenhage district, some 40 km away.

6.5.3 Coarse aggregate for concrete

Current investigations did not actively target the proving of potential hard rock sources that might be crushed to produce coarse aggregate. Certainly, there are no expectations for such potential sources within the Lower Coerney basin. Even in the general area of the Lower Coerney site and the Lower Sundays River valley in general, the chances of identifying a suitable source of coarse aggregate are considered to be remote. The general geology comprises weak sandstones and mudstones or siltstones which are not associated with crushed aggregates. The volumes of concrete required would be quite limited, however, and it is most likely that coarse aggregate requirements would be met from commercial sources.

6.6 Stability of cut slopes

Construction activities will result in temporary cut slopes, for instance for the cut-off trench, but also for the intake, conduit and the outlet works, as well as for the spillway ogee and chute excavations. These excavated faces within the soil horizons might be as deep as 8 m.

The gravel–sand stratum of reworked terrace gravels is of particular concern in terms of the stability of cut slopes. Where the cut slopes intersect this horizon, there is a likelihood that ravelling and spalling will occur within these gravel soils. This can result in undercutting of the overlying strata, and an associated risk of slope failure. The stability of these horizons will be further compromised when wet. Excavation within these gravels also carries the risk that removal of the coarser fraction can result in further disturbance of the stratum, and due care is called for in these instances.

All slopes must be cut to safe angles, and/or shored as appropriate; particular attention must be paid to the gravel–sand horizons as described above. It is essential that these safe slope angles for these cut faces be verified by a suitably qualified and experienced geotechnical practitioner.

6.7 Reservoir basin slope stability

The slopes defining the reservoir basin are characteristically very gently sloping. There are consequently no concerns regarding the possibility of catastrophic failure of the reservoir slopes to the extent of being a risk to the structure.

7 Conclusions and Recommendations

7.1 Site comparatives

This report presents the findings of the ground investigations conducted at the Lower Coerney dam site. It is noted however that this site is one of two alternative potential sites. While the findings of the alternative Upper Scheepersvlakte site are presented in a separate report, the key elements of both sites are summarised below (**Table 7.1**) in order to facilitate geotechnical comparison between these respective sites.

It is acknowledged that selection of the favoured option is dependent on a multitude of factors; Table 7.1 below however only summarises the geological / geotechnical factors. Consideration of the other factors is beyond the scope of this geotechnical report.

Table 7.1:	Summarised	geotechnical	factor	comparisons
------------	------------	--------------	--------	-------------

Geological factors	Upper Scheepersvlakte	Lower Coerney
General geology	Underlain by strata of the Sundays River Formation, Uitenhage Group, comprising consists of thin grey sandstones, siltstones and mudrocks.	Underlain by strata of the Sundays River Formation, Uitenhage Group, comprising consists of thin grey sandstones, siltstones and mudrocks.
Geological profile; dam footprint	 Left flank; soils to 0.8m; very soft rock sandstone / dense residual soils to 5 m; very soft to soft rock sandstone / interbedded mudstone from 5 m; from 11.2 m medium hard rock sandstone. Central section (conduit – intake and outlet) Intake = topsoil to 0.35m; sandy soils with some gravels to 11.1m; soft rock sandstone from 11.1m; medium hard rock sandstone from 11.5m Outlet = Soils to 7.7m (with some gravels in places); soft to very soft rock (to clay) alternating sandstone / mudstone from 7.7m, becoming soft rock / medium hard rock from 10.1 Right flank; soils to 3.5m; gravel horizon to 5 m; bedrock from 5 m, very soft rock mudstone to stiff clay to 5.65m; very soft to soft rock interbedded mudstone from 5.65m. 	 Left flank; (upper), soils to 7.2m (including horizon of gravelly soils 4 – 7,2m); very soft rock mudstone, subordinate sandstone from 7.2m. Central section (conduit – intake and outlet) Intake; sandy soil to 2.65m; gravelly soils to 7.7m; soft to very soft rock (occasionally to clay) mudstone from 7.7m; medium hard to hard rock interbedded mudstone / sandstone from 9.8m. Outlet; sandy soil to 1.3m; gravel-sand horizon to 4m; very soft to soft rock sandstone from 4m; soft to medium hard rock sandstone interbedded mudstone from 4.6m; hard rock sandstone from 12m. Central section; sandy soils to 2m; gravelly horizon to 3.25m; soft to very soft rock sandstone from 5.5m; hard rock sandstone from 7.5m; mudstones more prominent from 11m. Right flank; topsoil to 0.8m; gravelly horizon to 2.7m; highly weathered, medium hard to soft rock from 2.7 m. Interbedded sandstones, mudstones.
Founding considerations	In terms of cut-off, a horizon is recognised at depth, across the footprint except on upper left flank, comprising rounded gravels in a sandy matrix, interpreted as reworked terrace gravels. This horizon is conservatively considered a potential seepage path, and the cut-off depths are to intersect this. In places the upper bedrock horizons prove to be pervious, but groutability will be questionable.	A gravelly horizon (1.2 to 5 m thick) is recognised which occurs across the footprint; considered to represent reworked terrace gravels. Note however the horizon is variable. Mostly the matrix was not recovered, but this stratum represents a potential preferred seepage path (a buried channel). Cut-off design is to consider this feature.
Excavation depths	For cut -off , while depths of a nominal 1.5m on the upper left flank (takes to weathered bedrock) might be considered, a depth of 5 m would be more consistent with an estimated 5 m on mid left flank (ensuring the cut-off extends beneath the	For the cut-off , on extreme / uppermost left flank, the principle of excavating to base of alluvial gravels implies a depth up to 7.2m, maybe some relaxation allowed on extreme upper flank.; in central section assume minimum depth of 5.5m but note

Geological factors	Upper Scheepersvlakte	Lower Coerney
	gravel-sand stratum), in central portion the cut off will be deeper, at least to 8 m but in places maybe up to 11 m; to depths of to 35m on mid-to upper right flank.	some variability; on mid right flank consider minimum depth of 3.5m (below gravel layer).
Foundation treatment	Items to consider would be durability of exposed mudrocks (would need to cover almost immediately on exposure). Permeability of rock mass and therefore need for treatment uncertain (or whether grouting of these weathered rocks would even be successful).	Mudrocks are susceptible to slaking; provision must be made for immediate protection after exposure. As above re presence of potential 'buried channel'; must ensure cut-off intersects this stratum. Permeability of rock mass is generally very low / tight, but instances of wash-out of softer strata are recorded. The 'groutability' of these weathered rocks is however uncertain. At face value the outlet conduit could likely be founded on the gravel-sand stratum, but this does not consider required founding levels.
Spillway; geological profile	Upper spillway (near ogee / sill); topsoil to 0.35m; very soft rock / medium hard rock at 1.2 m. Sandstones and interbedded mudstones. Lower spillway; Soils to 3.35 m; very soft rock from 3.35 m. Sandstone with interbedded mudstone.	Upper spillway (near ogee / sill); soils to 4 m; gravelly soil horizon to 7.2 m; very soft / soft rock (mainly mudstone, subordinate sandstone) from 7.2 m. Lower spillway (actually midway); soils to 5.45 m; gravelly soils to 6.7 m; very soft rock sandstone (sand in places) from 6.7 m; interbedded sandstone / mudstone from 8 m.
Spillway considerations	Weak bedrock, with mudstone interbeds. Assume erodible and that full concrete lining will be required. For ogee, assume founding of the mass concrete gravity structure at 5 m.	Soils underlain by weak bedrock that would be susceptible to erosion. Assume full concrete lining is required. No deep information at end of spillway, but appropriate energy dissipation is necessary.
Reservoir slopes	Natural slopes are essentially flat / gently sloping; no slope stability issues foreseen.	Natural slopes are essentially flat / gently sloping; no slope stability issues foreseen.
Construction materials	Limited testing of materials in basin indicates general compliance of local materials for use in impervious core; albeit with some scatter (particular with gradings). These materials are typically non-compliant with typical requirements for outer shell zones (or show wide scatter). Other materials like coarse aggregate and filter sands / fine aggregate will have to be imported.	Materials for the impervious core and the outer shell zones will generally be available in broad proximity to the dam and reservoir basin. The local soils show general compliance with typical material requirements but with some scatter – particularly for outer shell zones, and more work is required to define borrow areas. Other materials like coarse aggregate and filter sands / fine aggregate will have to be imported.

7.2 Follow-up investigations

Ground investigations conducted to date have been conducted at feasibility-level to provide inputs into preliminary design. As such the geotechnical information would not be sufficient for detail design, particularly if there are some design changes, and further geotechnical investigations will be necessary at the favoured site.

Current investigations were severely constrained by the limited access due to the dense bush, and importantly understandable environmental restrictions on permissible bush-clearing. With a decision regarding selection of the favoured site, together with the necessary approvals, it is expected that it will be possible to gain more access to the footprint as well as the greater reservoir area.

Particular geotechnical aspects that would need to be addressed in follow-up design-level investigations include, but not be limited to, the following;

- Additional confirmation of the general founding conditions, particularly the continuity (both laterally and vertically) of the conditions as understood from the currently limited boreholes.
 Deep trenches might be considered for final verification of the actual founding conditions.
- Founding conditions at the end of the spillway. Current assumptions are that weak, weathered rock will be intersected, and appropriate design of the stilling basin would require verification of the actual conditions and overburden thicknesses.
- Actual borrow areas preferably located within the reservoir basin need to be defined. Current investigations have indicated many of the soils would be suitable for use either as impervious core, or outer shell zones, but there is still some scatter. Further investigations will be necessary to provide greater assurance of actual borrow areas that define materials satisfying the specifications. Such investigations would comprise an extensive fieldwork programme, backed up by laboratory testing. Other materials including filter sands and coarse aggregate will have to be sourced commercially.
- The geohydrological characteristics of the identified gravel-sand horizon need to be better understood; in particular the potential negative effects of seepage via this stratum.

It is premature at this stage to address construction stage geotechnical activities in any detail, but the following might be borne in mind;

- Involvement of a geotechnical specialist during construction is essential. Activities would include regular inspection of all excavated faces and cut slopes from a stability point of view, oversight of any further geotechnical exploration and quality assurance testing, engineering geological mapping of the cut-off trench and recording of the as-built details, etc.
- One of the first actions on establishing a contractor would be the controlled backfilling of all investigations points (boreholes and test pits that are located on the dam footprint.

8 Report limitations

- Aurecon Ground Engineering (Tshwane) has prepared this report for the use of our Client, Department of Water and Sanitation (DWS). The report has not been prepared for use by parties other than the Client, and the Client's respective consulting advisors.
- 2. This report has been written with the express intent of providing sufficient information for Preliminary Design purposes. The geotechnical investigation has been conducted in accordance with accepted practice, and the opinions and conclusions expressed are made in good faith, based on the information available to the Ground Engineering team of Aurecon (Tshwane) at the time of preparing this report.
- 3. There are always some variations in subsurface conditions across a site due to geological conditions that cannot be defined fully even by exhaustive investigation. Hence, it is possible that the measurements and values obtained during the investigation may not represent the extremes of conditions which exist within the site. The precision with which subsurface conditions are identified depends on the method of drilling, the frequency and recovery of samples, the method of sampling, and the uniformity of the subsurface conditions. Subsurface conditions may therefore vary from the conditions encountered in the test pit / borehole locations.
- 4. The borehole logs and test pit profiles represent the subsurface conditions at the specific test location only. Boundaries between zones on the logs are often not distinct, but rather are transitional and have been interpreted. The soil descriptions in this report are based on accepted methods of classification and identification employed in geotechnical practice, as stated in this report. Classification and identification of soil involves judgement, and the Aurecon Ground Engineering infers accuracy in the classification and identification methods to the extent that is common in current geotechnical practice, and within the limitations of the ground investigation that was performed.
- 5. Furthermore, subsurface conditions, including groundwater levels can change over time. The groundwater conditions described in this report refer only to those observed at the place and time of observation noted in the report. These conditions may vary seasonally or as a consequence of construction activities in the area. This should be borne in mind, particularly if the report is used after a protracted delay or a period of protracted climatic conditions.
- 6. Should conditions exposed at the site during subsequent investigation or construction works vary significantly from those provided in this report, we request that Aurecon (Tshwane) Ground Engineering be informed and have the opportunity to review any of the

findings or conclusions of this report. It is highly recommended that during construction the site conditions be inspected by a representative of Aurecon Ground Engineering to confirm the geotechnical conditions and interpretations as well as recommendations in this report.

Note: the above list of limitations should be considered a live document, subject to amendment over time. This serves to highlight specific limitations and risks to the Client. These listed limitations are not protection against substandard work.

9 References

ASTM D 4221 – 99 (reapproved 2006). Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer.

Badenhorst, D.B. 1988. *The design of earth- and rockfill dam structures*. Unpublished Master's Degree Thesis. (in Afrikaans). University of Pretoria.

Department of Water Affairs (DWA). October 1988. O.R.D.P. Lower Sundays River G.W.S.; Scheepersvlakte Dam. Design Report.

Department of Water Affairs and Forestry (DWAF). July 1992. O.R.D.P. Lower Sundays River G.W.S.; Scheepersvlakte Dam. Completion Report. (in Afrikaans) Report No N400/10/ED07.\

Geological Survey February 1987. *Scheepersvlakte Dam – Side Valley Site; 1st Engineering Geological Feasibility / Design Report – Founding Conditions*. Report to Department of Water Affairs.

Harmse, H.J von M. 1980. *Dispersive soils; their origin, identification and stabilisation* (in Afrikaans), Ground Profile No 22, April 1980

Houlsby, A.C.1976. *Routine Interpretation of the Lugeon Water Test.* Q. Jnl. Engng. Geol. Vol 9. 1976. pp 303 – 313.

Jennings, J E B, Brink, A B A and Williams, A A B. 1973. *Revised Guide to Soil Profiling for Civil Engineering Purposes in Southern Africa.* The Civil Engineer in S A, p 3-12. January 1973.

Kijko, A., Graham, G, Bejaichund, M. Roblin, D. and Brandt, M.B.C. 2003. *Probabilistic Peak Ground Acceleration and Spectral Seismic Hazard maps for South Africa*. Council for Geoscience report 2003 – 0053.

Outeniqua Lab EC cc. 2016. Geotechnical Report. Geotechnical Site Investigation for the *Proposed Scheepersvlakte Irrigation Scheme Dam near Port Elizabeth in the Eastern Cape*. Report to Inconsult Engineers, dated 22 July 2016.

Sherard J L, Dunnigan, L P, Decker R S. 1976. *Identification and Nature of Dispersive Soils*. Journal of the Geotechnical Engineering Division. Proceedings ASCE, Vol 102, No. GT4, April 1976.

Shone, R.W. 2006. *On-shore Post-Karoo Mesozoic Deposits*. In Johnson, M.R., Anhuesser, C.R. and Thomas, R.J. (Eds). *The Geology of South Africa.* Geological Society of South Africa, Johannesburg, council for geoscience, Pretoria.

The South African Institution of Civil Engineering (SAICE) – Geotechnical Division. 2007. *The Safety of Persons Working in Small Diameter Shafts and Test Pits for Geotechnical Engineering Purposes – Code of Practice*, 1st Edition.

Van der Merwe, D.H. 1964. *The prediction of heave from the plasticity index and percentage clay fraction of soils*. The Civil Engineer in S A. June 1964.

Weinert, H.H. 1980. *The Natural Road Construction Materials of Southern Africa*. Academica. Pretoria.

Appendix A: Summary of soil and rock description terminology

STANDARD DESCRIPTIONS USED IN SOIL PROFILING

	1. MC	DISTURE CONDITION		2. COLOUR		
Term		Description				
			The Predominant colours or colour combinations			
Dry	<u> </u>		are described including secondary coloration			
Slightly moist		ldition of water to reach optimum ntent for compaction		described as banded, streaked, blotched,		
Moist	Near optimu	I		mottled, speckled or stained.		
Very Moist		ying to attain optimum content				
Wet		ted and generally below water table				
wei	T ully Satura		SISTENCY			
	3.1	Non-Cohesive Soils		3.2 Cohesive Soils		
Term	5.1 1	Description	Term	Description		
-	Ormela	· · · · ·	-			
Very Loose	geological p	ery easily when scraped with ick	Very soft	Easily penetrated by thumb. Sharp end of pick can be pushed in 30 - 40mm. Easily moulded by fingers.		
Loose	Small resist geological p	ance to penetration by sharp end of ick	Soft	Pick head can easily be pushed into the shaft of handle. Moulded by fingers with some pressure.		
Medium Dense	Considerab end of geolo	e resistance to penetration by sharp ogical pick	Firm	Indented by thumb with effort. Sharp end of pick can be pushed in up to 10mm. Can just be penetrated with an ordinary spade.		
Dense		esistance to penetration to sharp end of ick. Requires many blows of hand avation.	Stiff	Penetrated by thumbnail. Slight indentation produced by pushing pick point into soil. Cannot be moulded by fingers. Requires hand pick for excavation.		
Very Dense	0	nce to repeated blows of geological res power tools for excavation	Very Stiff Indented by thumbnail. Slight indentation produced by blow of pick point. Requires por tools for excavation.			
	4.	STRUCTURE		5. SOIL TYPE		
			5.1 Particle Size			
Term		Description	Term	Size (mm)		
Intact	Absence	of fissures or joints	Boulder	>200		
Fissured	Presence	of closed joints	Pebbles	60 - 200		
Shattered	Presence cubical fra	of closely spaced air filled joints giving agments	Gravel	60 – 2		
Micro- shattered		le shattering with shattered fragments f sand grains	Sand	2 – 0,06		
Slickensided	Polished movement	planar surfaces representing shear t in soil	Silt	0,06 - 0,002		
Bedded Folitated	Many resi rock.	dual soils show structures of parent	Clay	<0,002		
		6. ORIGIN		5.2 Soil Classification		
	6.1	Transported Soils				
Terr	1	Agency of Transportation				
Colluv		Gravity deposits		°∧100		
Talu		Scree or coarse colluvium		10 90		
Hillwa		Fine colluvium				
Alluv		River deposits				
Alluv Aeoli		Wind deposits				
Litoral		Beach deposits	SIGHTLY SANDY SLIGHTLY SLIGHTLY 50			
Estuar		Tidal – river deposits		60 CLAY SLIGHTLY SANDY AND		
Lacust		Lake deposits		70 \swarrow SANDY \checkmark SILTY CLAY \checkmark SILTY \checkmark 30		
Luous		2 Residual soils	80	CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY		
These are	e products of	in-situ weathering of rocks and are as e.g. Residual Shale	100 SAND	CLAYEY SAND CLAYEY SAND SILT IGHTLY CLAYEY SAND SANDY SILT SILT SILT SILT CLAYEY SAND SANDY SILT 0		
		.3 Pedocretes	0	10 20 30 40 50 60 70 80 90 100		
	med in trans	ported and residual soils etc. manganocrete and ferricrete.		/		
calC		กาลกฎลกบนายเย สกับ เยกานเยเย.				

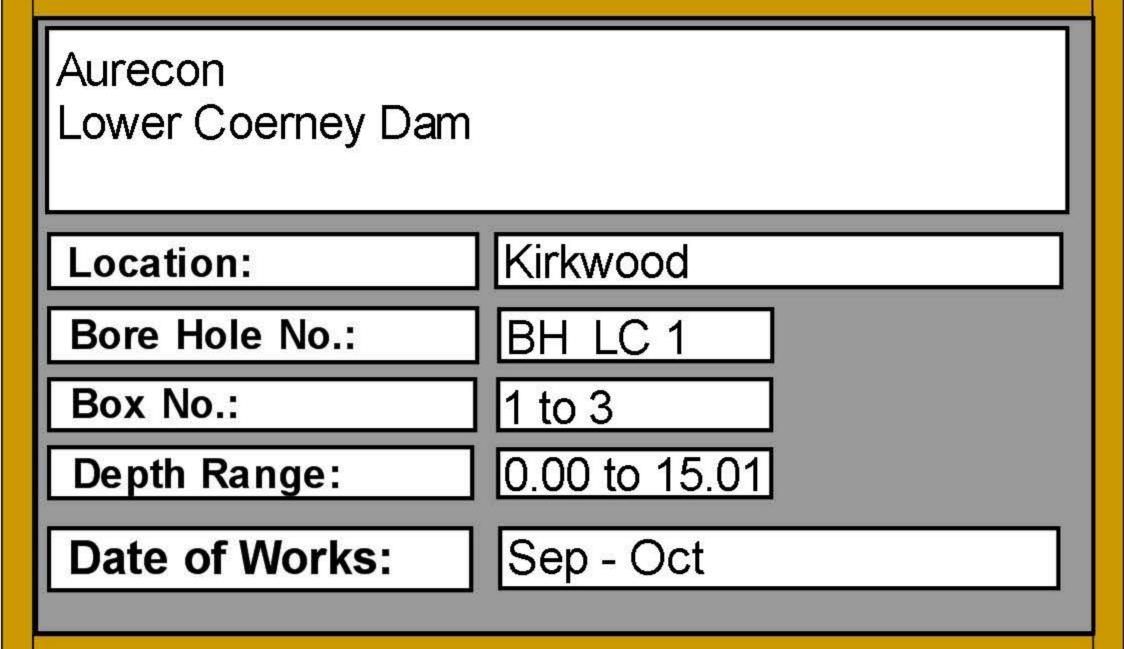
SUMMARY OF DESCRIPTIONS USED IN ROCK CORE LOGGING

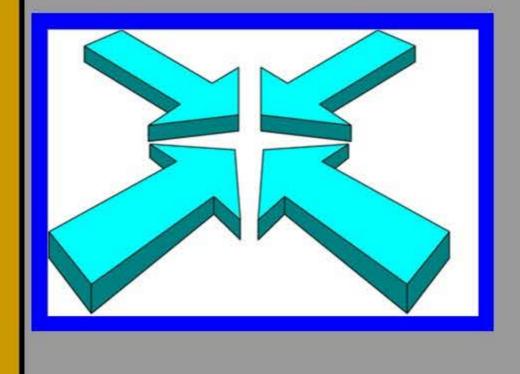
		1.	WEATHERING				
Term	Symbol		nostic Features	nostic Features			
Residual Soil		Rock is discoloured an destroyed. There is a		d to a soil in which original rock fabric is completely ne.			
Completely Weathered		Rock is discoloured an occasional small cores		out original fabric is mainly p	preserved. There may be		
Highly Weathered	1		the discontinuities m	e open and have discoloured ay be altered; alternation p	d surfaces, and the original enetrates deeply inwards,		
Moderately Weathered				open and will have discolo act rock is noticeably weake			
Slightly Weathered	,			rly adjacent to discontinuitie intact rock is not noticeably			
Unweathered	W1	Parent rock showing n	o discolouration, loss	s of strength or any other we	eathering effects.		
	2. H	IARDNESS		3. C	OLOUR		
Classification	Fiel	d Test	Compressive Strength Range MPa				
Very Soft Rock	Can be peeled wit crumbles under fir sharp end of a geo	m blows with the	1 to 3	•	irs or colour combination g secondary colouration		
Soft Rock	Can be scraped w indentation of 2 to blows of the pick p	4 mm with firm	3 to 10	described as banded, streaked, blotched, mottled, speckled or stained.			
Medium Hard Rock	Cannot be scraped knife. Hand held s with firm blows of	specimen breaks	10 to 25				
Hard Rock	Point load tests m order to distinguisl classifications	ust be carried out in h between these	25 - 70				
Very Hard Rock	These results may uniaxial compress selected samples.	be verified by ive strength tests on	70 - 200				
Extremely Hard Rock			>200				
	-		4. FABRIC				
4.1	Grain Size		4.2	Discontinuity Spacing			
Term	Size (mm)	· · · · · ·	Bedding, foliation, nations	Spacing (mm)	Descriptions for joints, faults, etc.		
Very Coarse	>2,0	Very Thic	ckly Bedded	> 2000	Very Widely		
Coarse	0,6 - 2,0	Thickly	y Bedded	600 - 2000	Widely		
Medium	0,2 - 0,6	Mediur	n Bedded	200 - 600	Medium		
Fine	0,06 - 0,2	Thinly	Bedded	20 - 200	Closely		
Very Fine	< 0,06	Lam	ninated	6 - 20	Very closely		
		Thinly L	_aminated	<6			
	5. R	OCK NAME	6. STRATIGR	APHIC HORIZON			
	Classified in	n terms of origin:					
IGNEOUS		te, Gabbro, Syenite, D rachyte, Andesite, Bas			Identification of rock type in terms of stratigraphic		
METAMORPHIC	Sla [®]	te, Quartzite, Gneiss, S	Schist,	horizons.			
SEDIMENTARY		tone, Siltstone, Sands erate, Tillite, Quartzite,					

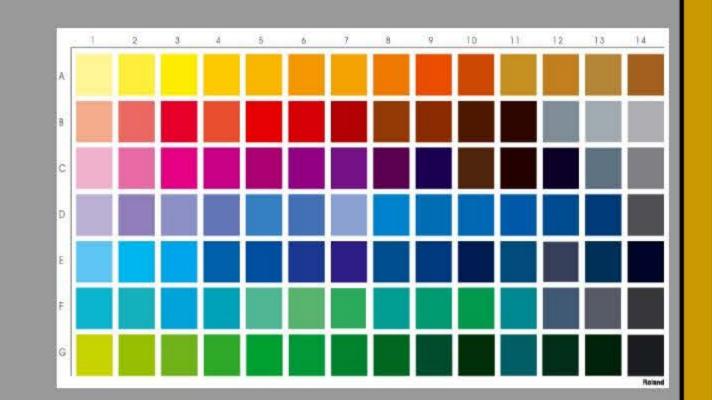
Appendix B: Borehole logs

N/A N/M IT	VIATIONS not applica. not measui invalid test no test	ble reable	JOINT II Cl Clay Slt Silt Snd San St Stai Cn Clea	d ned	VCJ v CJ c MJ m WJ w	SPACING rery close s close spacion nedium spa vide spacin rery wide s	spacing ng acing ng	JOINT ROU S smooth SRslightly ro R rough		WEAT BROW 100% 75% 50% 25% 0%	HERING SHADING VN soil completely weathered highly weathered moderately weathered slightly weathered unweathered	aure	econ	Lower Coerney	HOLE No: LC1 Sheet 1 of 1
83.36 82.56	80				N/A	N/A	N/A	N/A				Brown	n to red-brown, slightly c	clayey silty sand. Colluvium.	
80.66	$ \begin{array}{c} 21 \\ 33 \\ 38 \\ 117 \\ 33 \end{array} $	0 0 11 0 0			N/A	N/A	N/A	N/A		- 1 - 2	Scale 1:175 $\begin{array}{c} \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ \\ \circ & \circ &$	Roun Alluvi	um.	o coarse gravel (10-50mm) of very ha	rd rock quartzite.
78.81	79 73 133 99 97	0 16 83 90 97		14	10-20 70	CJ -	R/S R/S	weathered film weathered		3	· · · · · · · · · · · · · · · · · · ·	1. Ma	trix lost brown, highly weathered	d, closely jointed (60-200mm), mediun	n hard rock
	105	96 27	17	20 20				<u>film</u>		6		Light	-3.35m has highly to cor yellow-brown / grey / bro	mpletely weathered, very soft rock. own / purple-brown, highly weathered, soft rock to medium hard rock, mainly	very closely to
	94	94	50	11	10-20	VCJ	S S	-		8		interb	edded with fine silty san	ndstone (5-6.5m, 7.5-8m).	
	107	107	66	10 16	70	-	5	-		9		2. Co	places completely weath mpletely broken zone at	: 6.4-6.9m	
72.42	95	91	43	11						10	10.94		dstone susceptible to sla	C C	
	97	95	25	20	0	VCJ	S	-		11			brown, highly weathered ock sandstone.	d, very closely jointed (50-60mm), mea	lium hard rock to
70.26	93	88	17	20 14	30 	MJ	S 	St		13	<u> </u>	1. Ha	rd rock = wall rock	weathered, closely jointed (60-150mm) soft rock to modium
68.35	96	76	21	15	0-10 30	VCJ -	S S	-		14 	15.01	hard ı	ock / hard rock, mainly r -13.44m	mudstone with subordinate interbedde	ed sandstone
										16 17		NOTE 1. Als 2. Mu	: o fine silty sandstone dstone 14.5+m very brol	ken	
										18		NOTE	<u>:S</u> :		
										19 20		Wate	r level at 13.75m, as me	asured on 03 October 2018	
										21					
										22 23					
										24					
Reduced	Material	Core	RQD	Frac	Joint	Joint	Joint	Joint		25 Socio					
Level		Recovery %		Freq No / m	Inclin.	Spacing		Infill	Weatherin	g 1:175		ſ	Contractor: RWBE Machine: D90 YWE	Logged by: Gary Davis Logged date: 4/10/2018	Elevation: 83.36 North: -58099.59
													Drilled by: Mothu	Drilled date: -	East: 3702689.25

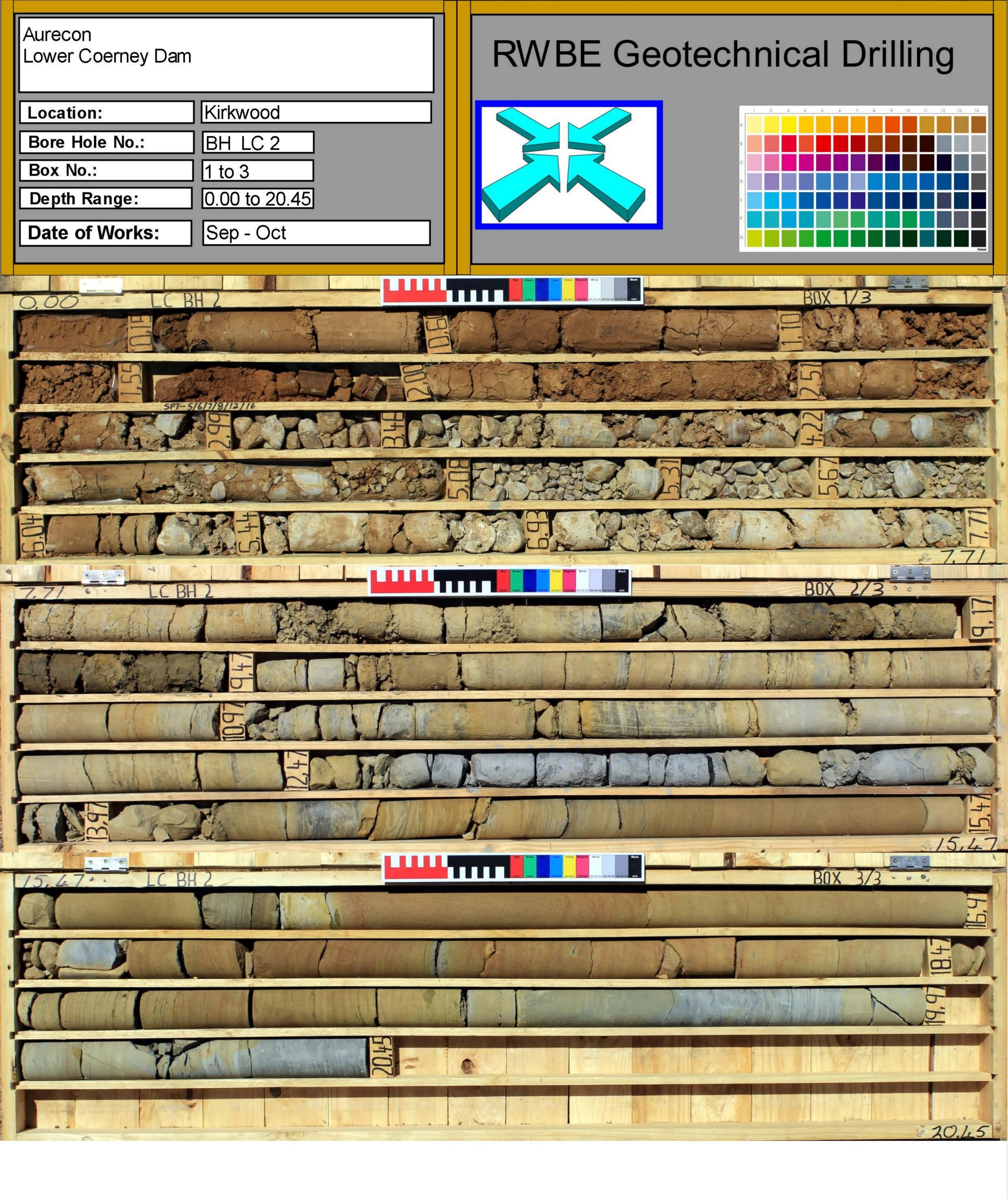
N/A n N/M n	VIATIONS not applical not measur nvalid test no test	ole (eable	JOINT IN Cl Clay Slt Silt Snd Sand St Stair Cn Clea	, d ned	JOINT S VCJ ver CJ clos MJ me WJ wid VWJ ver	ry close s se spacir dium spa le spacin	spacing ng acing g	JOINT RC S smootu SR slightly R rough	h	S WEATH BROWI 100% 75% 50% 25% 0%	ERING SHADING I soil completely weathered highly weathered moderately weathered slightly weathered unweathered	HOLE NO. E OL
89.15	87 98 71 89 108			- - - -	43		N/A	N/A	N/A	N/A	1 Sca 2 1:17	
81.45	96 43 70 95 83 43 65 76 71	0 14 0 0 0 0 18 47 41	0 0 0 0 0 0 22 31			NT	N/A	N/A	N/A	N/A	- 3 - 4 - 6 - 7	$\circ_{\mathcal{O}} \circ_{\mathcal{O}} \circ_{\mathcal{O}}$ Round to sub-round matrix supported, medium to coarse gravel (10-60mm) of very hard rock quartzite in matrix of silty to clayey sand. $\circ_{\mathcal{O}} \circ_{\mathcal{O}} \circ_{\mathcal{O}} \circ_{\mathcal{O}}$ Alluvium. $\circ_{\mathcal{O}} \circ_{\mathcal{O}} \circ_{\mathcal{O}}$
· 79.40	98 103	92 	25 	12		64	10 40	VCJ VCJ	R/S S	CI -	9	Yellow-brown (khaki) to grey-brown, highly to completely weathered, closely jointed (60-200mm), generally soft rock to very soft rock (but in places weathered to clay) mudstone.
75.00	95 102 72	93 98 59	49 77 0	12 11 11 15		12	10 50	VC-MJ VC-MJ	R/S S	St with filn of Cl -	10 11 12 13	NOTE: 1. Weathered zones (to clay) 8.1-8.2m, 8.42-8.46m, 9.17-9.47m Brown to dark grey, highly to moderately weathered, generally close to medium jointed (60-250mm) occasionally very closely jointed, generally medium hard rock to hard rock, but soft rock / very soft rock in places, interbedded mudstone / sandstone. 14.15 NOTE:
	86 97 91	84 97 87	64 80 68	7 7 2 11		0	0-20 90	VCJ WJ	R R/S	St -	15 16 17 18	1. Significant material loss, assumed 13.5m+ ascribed to completely weathered (clay) horizon 2. Mudstone beds at 11.0-11.28m, 11.45-11.68m, 12.5-14.0m Brown, highly weathered, close to widely jointed (100-1000mm), hard rock, medium to coarse sandstone. NOTE: 1. Minor interbedded mudstone at 14.45-14.55m
9.82 8.70	96 108	96 108	75 79	6		35	0-10 60/	VCJ MJ	R/S _R/S		20	2. Prominent weathered zone at 15.75-15.95m, joints prominently stained, possible seepage path 20.45 Grey to brown, moderately weathered, close to medium jointed (100-550mm), hard rock, fine to medium sandstone, laminated in places.
											21 22 23 24 25	NOTE: 1. With pieces of charcoal 2. Laminations = planes of weakness - also susceptible to slaking <u>NOTES</u> : Water level at 19.60m, as measured on 03 October 2018
	Material Recovery %	Core Recovery %	RQD (%)	Frac Freq No / m	SPT Test	Packer Test	Joint Inclin. (deg)	Joint Spacing	Joint Rough- ness	Joint Infill	Weathering Scale 1:175	Contractor: RWBELogged by: Gary DavisElevation: 89.15Machine: D90 YWELogged date: 4/10/2018North: -58215.9Drilled by: MothuDrilled date: -East: 3702532.15

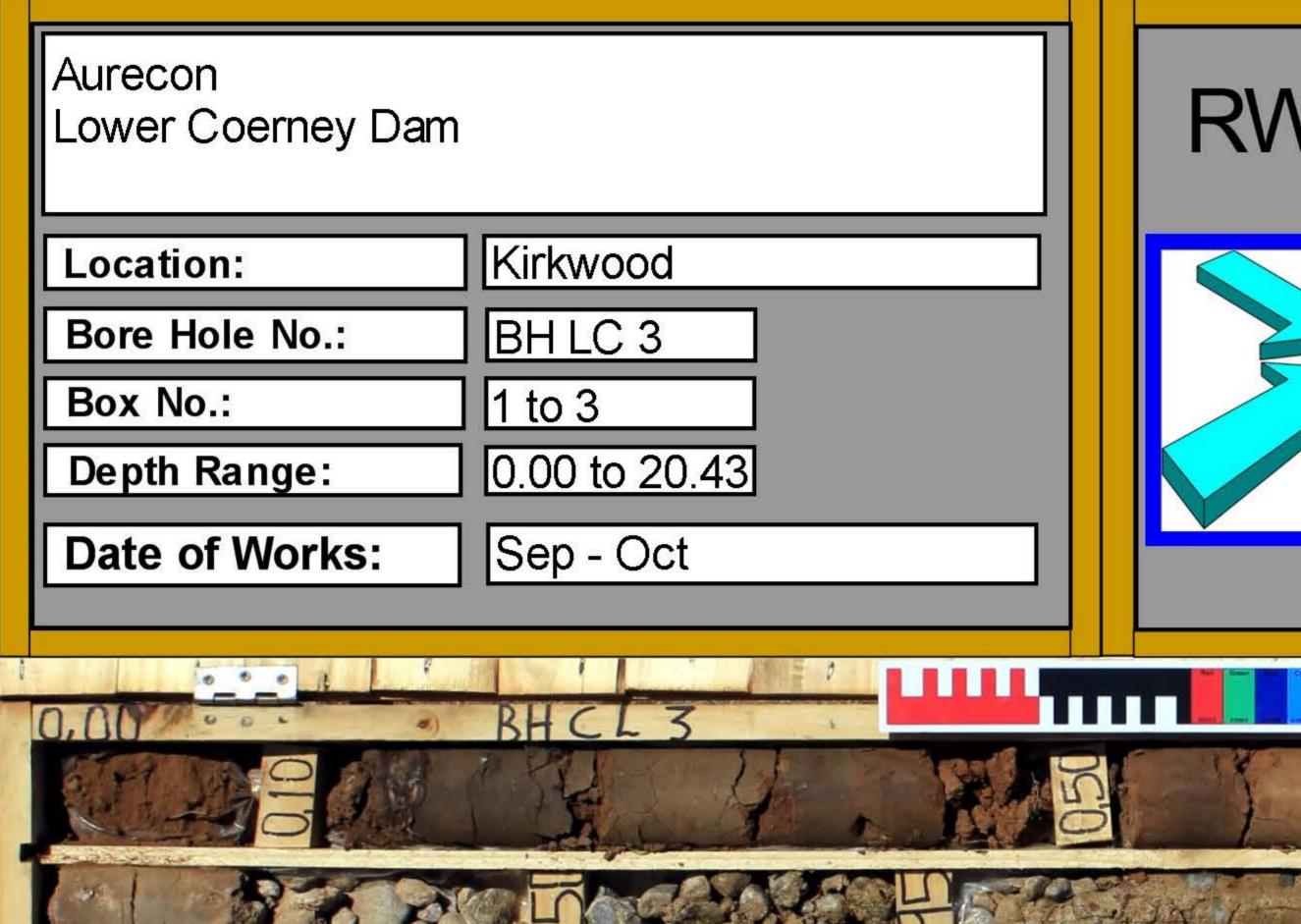

N/A r N/M r	VIATIONS ot applicab ot measure valid test o test	le eable	JOINT IN CI Clay SIt Silt Snd Sand St Stair Cn Clea	d ned	VCJ v CJ d MJ v WJ v	T SPACIN very close close spa medium s wide spac very wide	e spacing cing pacing cing	S smoo	oth tly rough	5 WEATH BROWI 100% 75% 50% 25% 0%	IERING SHAI v soil completely highly weat moderately slightly wea unweathere	weathered hered weathered thered	au	Lower Coerney	HOLE No: LC3 Sheet 1 of 1
84.30 83.02	100 100 85					N/A	N/A	N/A	N/A		- 1	× · · · ×	1.28	Orange-brown, silty sand. Colluvium.	
80.25	66 33 155 67 100 18 45				NT	N/A	N/A	N/A	N/A		Scale 2 1:175		>	Orange-brown, silty to slightly clayey sand (matrix) with mediun gravel, round to sub-round, very hard rock quartzite. Alluvium. NOTE: 1. Matrix mostly lost	n to coarse (1-6cm)
79.70	100			15		10	VCJ	S	W		4		4.60	Yellow to grey-brown, highly to completely weathered, very close	sely jointed (up to
	99	94	30	15							5			60mm), very soft rock to soft rock sandstone with subordinate r Occasionally weathered to sand.	nuastone.
	100	100	33	20	0						- 7			Brown to grey-brown, highly weathered (moderately weathered very closely to closely jointed (<60-200mm), soft rock to mediu then medium hard rock (hard rock where moderately weathere rock to soft rock in mudstone), mainly sandstone with interbedo	m hard rock (to 6m) d and medium hard
	76	76	41	7		0-10	VC-CJ	s	W, St		8				
				20	15	80	-	R/S	Śt		9			NOTE: 1. Mudstone to muddy siltstone at 4.6-4.8m, 4.9-5.1m, 9.1-10.0	m
	91 15	88	7	11							- 10				
	108	95	0	13	1						- 11	· · · · ·			
72.30	75	75	65	3							12	· · · ·	12.00	Mainly grey to brown, moderately weathered to unweathered, o	losely to medium
	125	125	123	8		0-10	VC-WJ	s			- 13			jointed (150-500mm), hard rock, mainly sandstone.	
69.14	85	82	41	11		0-10	10-113	0	_		- 14		15.16	NOTE: 1. From 14m, laminations of mudstone becoming more common susceptible to slaking, some poor zones.	
	93	81	54	6 12	0						- 16			Dark grey, unweathered, medium to widely jointed (but note su slaking/disintegration), hard rock mudstone / carbonaceous mu	sceptible to idstone.
	97	66	34	8							17			NOTE: 1. Varying susceptibility to slaking (particularly susceptible at 1	5.9-17.8m·
	93	93	88	3		0-10	MJ	S	-		-18 👤			18.95-19.05m). Some zones of complete disintegration.	5.5-17.011,
	63	57	38	4							19				
63.87	259	259	212								- 20		20.43		
											- 21			NOTES:	
											- 22			Water level at 18.10m, as measured on 03 October 2018	
											23			· · · · · · · · · · · · · · · · · · ·	
											- 24				
											- 25				
Reduced Level	Material Recovery %	Core Recovery %	RQD (%)	Frac Freq No / m	Packer Test	Joint Inclin.	Joint Spacing	Joint Rough- ness	Joint Infill	Veathering	Scale 1:175				
ļ	/0	/0		10711		(deg)		11635						Contractor: RWBE Logged by: Gary Davis	Elevation: 84.3
														Machine: D90 YWE Logged date: 4/10/2018	North: -58252.35
														Drilled by: Mothu Drilled date: -	East: 3702625.65

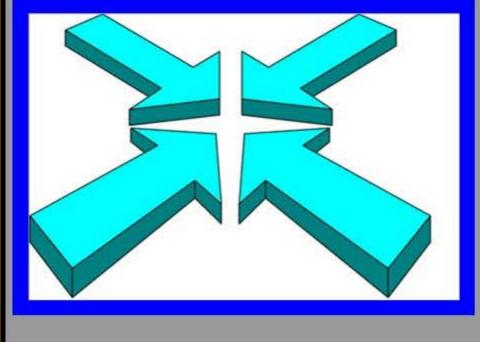

N/A n N/M n	VIATIONS not applica not measur nvalid test no test	ble reable	JOINT II CI Clay Sit Silt Snd San St Stai Cn Clea	/ d ned	JOINT S VCJ vel CJ clo MJ me WJ wid VWJ vel	ry close s se spaci dium spa le spacir	spacing ing acing ng	JOINT RO S smoot SRslightly R rough	h ⁄ rough	SS WEATH BROWI 100% 75% 50% 25% 0%	HERING SHADING N soil completely weathered highly weathered moderately weathered sightly weathered unweathered	HOLE No: LC4 Sheet 1 of 1
81.82				- - -	66		N/A	N/A	N/A	N/A	1 Scale	Slightly reddish brown, slightly clayey silty sand. Colluvium.
78.57	34 \ <u>600</u> \53	0		12		NT	N/A	N/A	N/A	N/A	2 1:175 3	Rounded to sub-rounded, coarse gravel (20-60mm) of very hard rock quartzite with matrix of clayey sand. Alluvial.
76.32	85 93	93	61	- 14			10 50-60	CJ ?	S R/S	Snd/W/C W/Snd	4 5	NOTE: 1. Matrix lost 5.50 Light brown, occasionally grey-brown, highly weathered, very close to Light brown, occasionally grey-brown, highly weathered, very close to
10.02	102	102 81	70 63	10 9		0	10-30	C-MJ	R/S	W film	6	rock sandstone with interbedded mudstone lenses.
74.32	91 98		64 80	6 5							8	7.50 NOTE: 1. Assume material loss in upper 50mm due to very soft rock / soil 2. Also other minor losses Light brown, highly weathered, close to medium jointed (generally
	94	94 103	50 83	10 8		13	10 60 30	VCJ MJ C-WJ	S/R S S		9	60-200mm, up to 450mm), medium hard rock, génerally medium to coarse sandstone with minor mudstone interbeds.
70.87	67	67	11	° 9			90 10	? VC-CJ	S S	- St	11	10.95 weathered, close to medium jointed (100-600mm), generally hard rock with medium to fine sandstone, occasionally coarse grained with occasional muddy sandstone interbeds.
68.52	138 59	123 55	13 0	20 20		0	30 60 ∖90	MJ ? _?_/	S S ∖S	St St St St	13	Generally grey-brown to dark grey, slightly to moderately weathered, very 13.30 close to closely jointed (<60-100mm), soft rock to medium hard rock mudstone with minor interbeds of fine sandstone.
66.78	101 Material	Core	61	11 Frac	SPT	Packer		VC-MJ ? Joint	SS	Joint	14 15 16 17 18 19 20 21 22 23 24 24 25 50 26	 15.04 NOTE: Material loss at 11.5-12m estimated. Assume completely weathered clay interbed. From 12.6m, horizon very closely jointed (completely fractured), weak horizons to very soft rock / clay. Mudstone assumed susceptible to slaking Dark grey, unweathered, very closely to medium jointed (<60-550mm), medium hard rock to hard rock in places, to soft rock, carbonaceous mudstone with occasional interbedded sandstone / susceptible to slaking (particularly to depth of 14m) NOTES: Water level at 12.70m, as measured on 03 October 2018
Level	Recovery %			Freq No / m	Test	Test	Inclin. (deg)	Spacing	Rough- ness		Weathering Scale 1:175	Contractor: RWBE Logged by: Gary Davis Elevation: 81.82
												Machine: D90 YWELogged date: 4/10/2018North: -58170.99Drilled by: MothuDrilled date: -East: 3702620.43

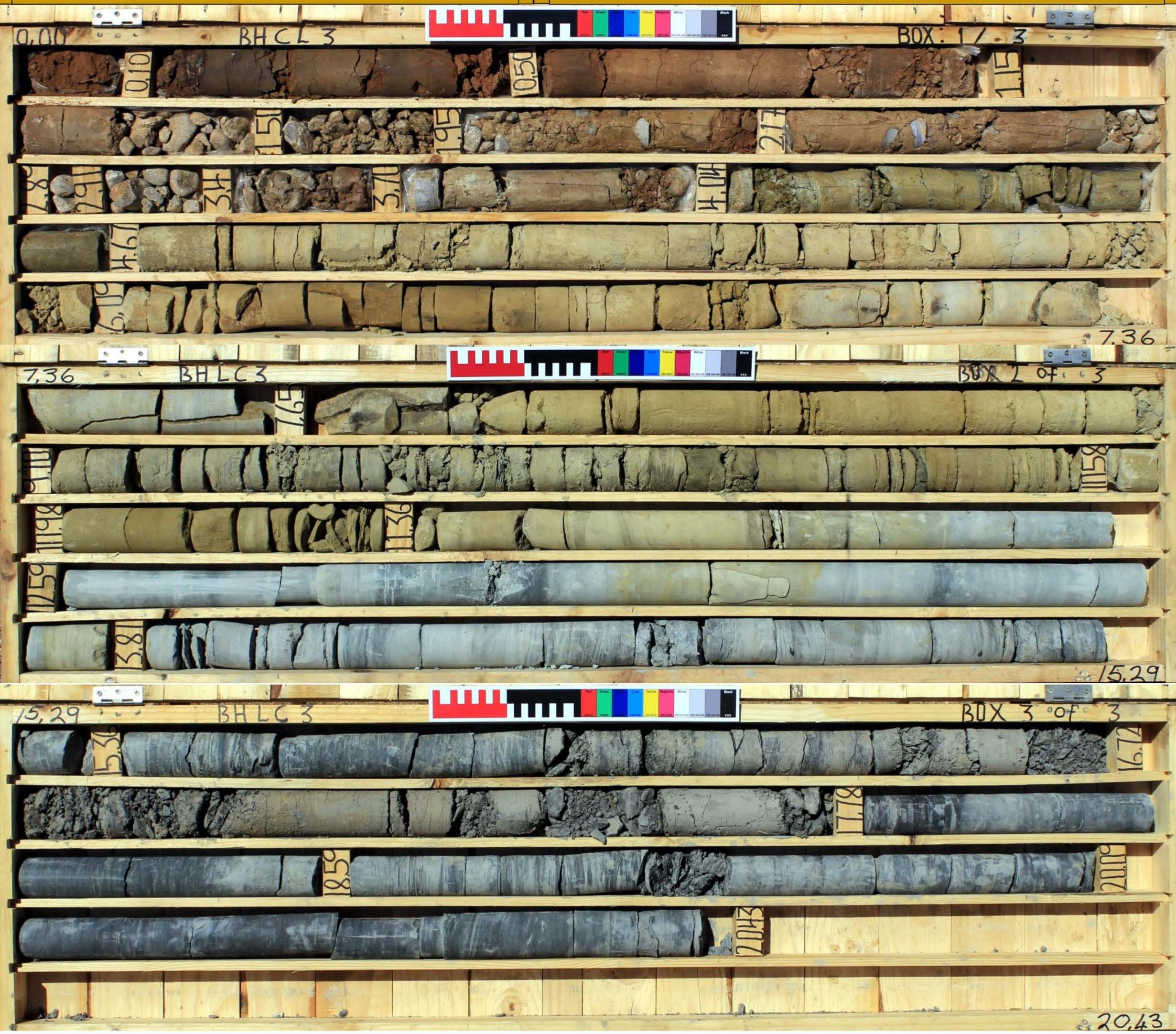

N/A n N/M n IT ir NT n	VIATIONS not applical not measur nvalid test no test	ole (eable 3	IOINT IN CI Clay Sit Silt Snd Sand St Stair Cn Clea	d ned	VCJ v CJ c MJ n WJ v	SPACING rery close s lose spacin nedium spa vide spacin rery wide s	spacing ng acing Ig	JOINT ROL S smooth SR slightly r R rough		WEA BROV 100% 75% 50% 25% 0%	VN soil com high mod sligh	IG SHADING npletely weathered ly weathered derately weathered htly weathered veathered	aure		Lower Co	-	HOLE No: LC5 Sheet 1 of 1
102.66	90 57				<u>N/A</u>	N/A/	<u>N/A</u>	<u>N/A</u>	/			× · · × 0.00		e to red-brown,			
100.51	125 124	0	0		N/A	N/A	N/A	N/A		1	Caala	1.50	Red-r	rown, silty sand nenic	with scattered po	ockets / nodules calrete. Colluviu	m with some
	100 95	0	0		N/A	N/A	N/A	N/A		2	Scale 1:175		Yellov	<i>y</i> -brown to red-br	rown, clayey san	d. Colluvium.	
98.01	98 96	0	0		N/A	N/A	N/A	N/A		- 4 - 5		$\begin{array}{c} \cdot & \cdot & \cdot & \cdot \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	Red-b scatte	rown, becoming red medium to c ock quartzite. All	oarse gravel (1-6	r base, slightly clayey silty sand (5 and up to 10cm), occasionally o l terrace gravel?	matrix) with cobbles of very
	90	0	0							6		RARA	NOTE				
94.81	99	0	0							7			1. Sca	attered calcrete d		athered (to completely weathered	t in places)
	97	90	50	5	0-10	MJ	s	w		8	¥		mediu		ed, very soft rocl	<pre>< to soft rock, predominantly mud</pre>	
91.98	100	100	68	6						10	<u>+</u>	10.00	NUTE	: ceptible to slakir			
Reduced	Material	Core	RQD	Frac	Joint	Joint	Joint	Joint		11 12 13 13 14 15 16 17 18 19 20 21 22 23 24 25 20 20 21 22 24 25 20 20 20 20 20 20 20 20 20 20 20 20 20			<u>NOTE</u> Water		as measured on	03 October 2018	
Reduced Level	Material Recovery %		RQD (%)	Frac Freq No / m	Inclin.	Joint Spacing	Joint Rough- ness	Joint Infill	Weathering	Scale 1:175				Contractor: RV Machine: D90 \ Drilled by: Moti	(WE	Logged by: Gary Davis Logged date: 4/10/2018 Drilled date: -	Elevation: 102.01 North: -58427.33 East: 3702391.34

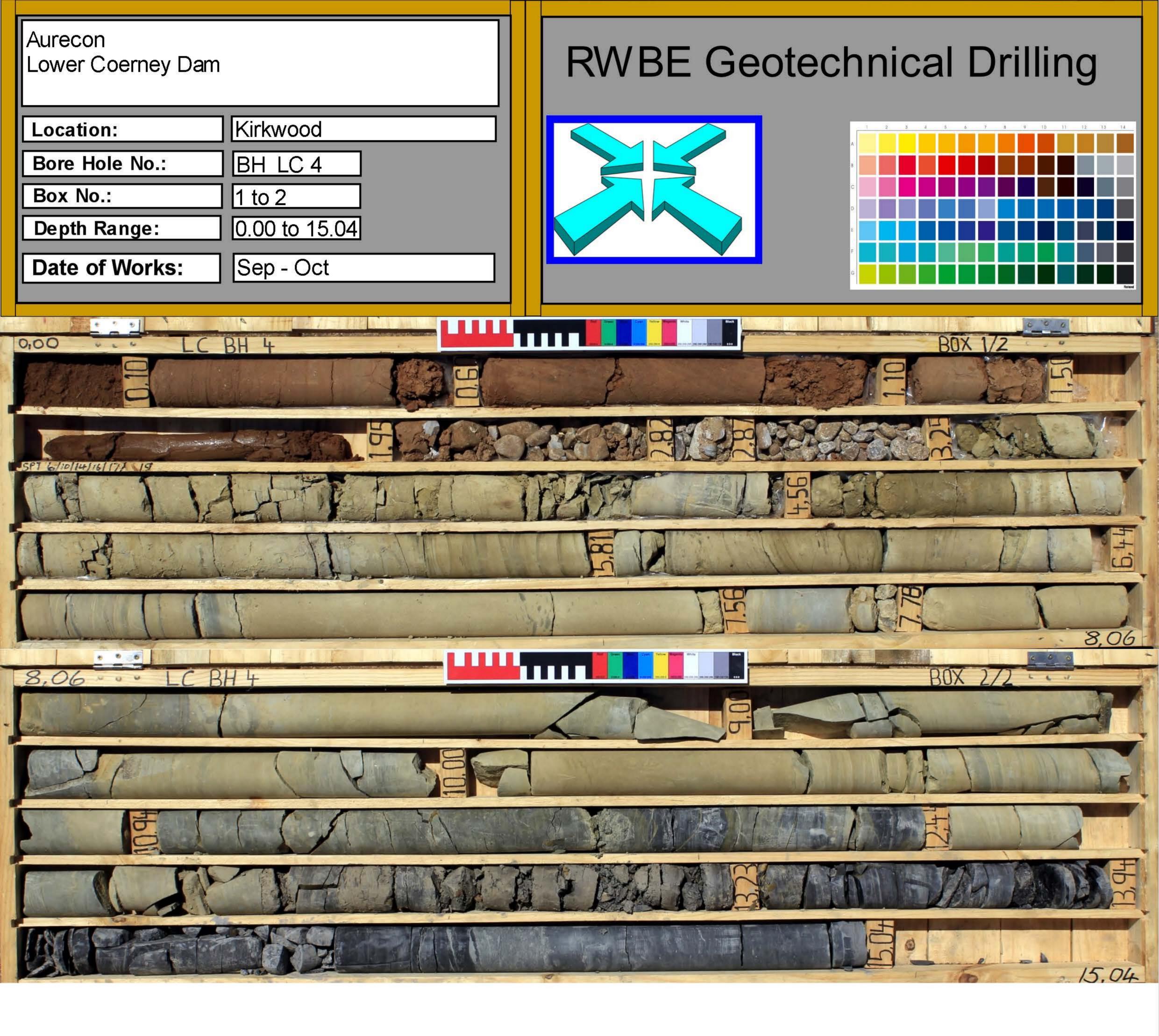
N/A N/M	VIATIONS not applical not measur invalid test no test	ble reable	JOINT II CI Clay SIt Silt Snd San St Stai Cn Clea	/ d ned	VCJ v CJ c MJ n WJ v	SPACING ery close s lose spaci nedium spa vide spacin ery wide s	spacing ng acing ng	JOINT ROU S smooth SRslightly r R rough		5 WEAT BROW 100% 75% 50% 25% 0%	VN soil compl highly model slightl	SHADING letely weather weathered rately weath y weathered athered	ered	aur	econ Lower	Coerney	HOLE No: LC6 Sheet 1 of 1
89.98	95 100 99 92 99 99 100	0 0 0 0 0		-	N/A	N/A	N/A	N/A		- 1 - 2 - 3 - 4	Scale . 1:175 .		0.00	Red	to orange-brown, silty to clayey	y sand. Colluvium.	
84.53	105	0	0	1						5		×	5.45		an brown to brown silty sand ((matrix) with scattered, sub-rounded to	sub angular
83.28	99 94	0	0	-	N/A	N/A	N/A	N/A		6	,	©~~ 0~~ ≈ ↓ × ↓	6.70	me me	ium to coarse (10-40mm) grave	el of very hard rock quartzite / loosely p	acked, matrix
01.00	100	94	90	2	60	MJ	R/S	w		7		· · · · · ·		Sup Yel	ow to grey-brown to whitish, hig	m+. Alluvium (or reworked terrace grav hly to completely weathered, medium j	ointed
81.98 79.88	100	93 92	34	10 15	0-10	VC-CJ	s	W film		9		· · · · · · · · · · · · · · · · · · ·	8.00	har NO	rock quartzite.	d, sandstone (sáprolite mainly) but incl	udes bands of
										11 12 13				Ligi	t yellow-brown, highly weathere ium hard rock, but some very s 9.55m, completley brown to 9.	ed, closely jointed (60-200mm), genera oft rock interbedded, fine sandstone ar 7m, also very soft rock mudstone interl	nd mudstone
Reduced Level	Material Recovery %		RQD (%)	Frac Freq No / m	Joint Inclin. (dea)	Joint Spacing		Joint	Weatherin	14 15 16 17 18 19 20 21 21 22 23 24 25 Scale 1:175			_	Wa	er level at 8.80m, as measured	on 03 October 2018	
	%	%		No / m	(deg)		ness								Contractor: RWBE Machine: D90 YWE Drilled by: Mothu	Logged by: Gary Davis Logged date: 4/10/2018 Drilled date: -	Elevation: 89.98 North: -58387.47 East: 3702608.97

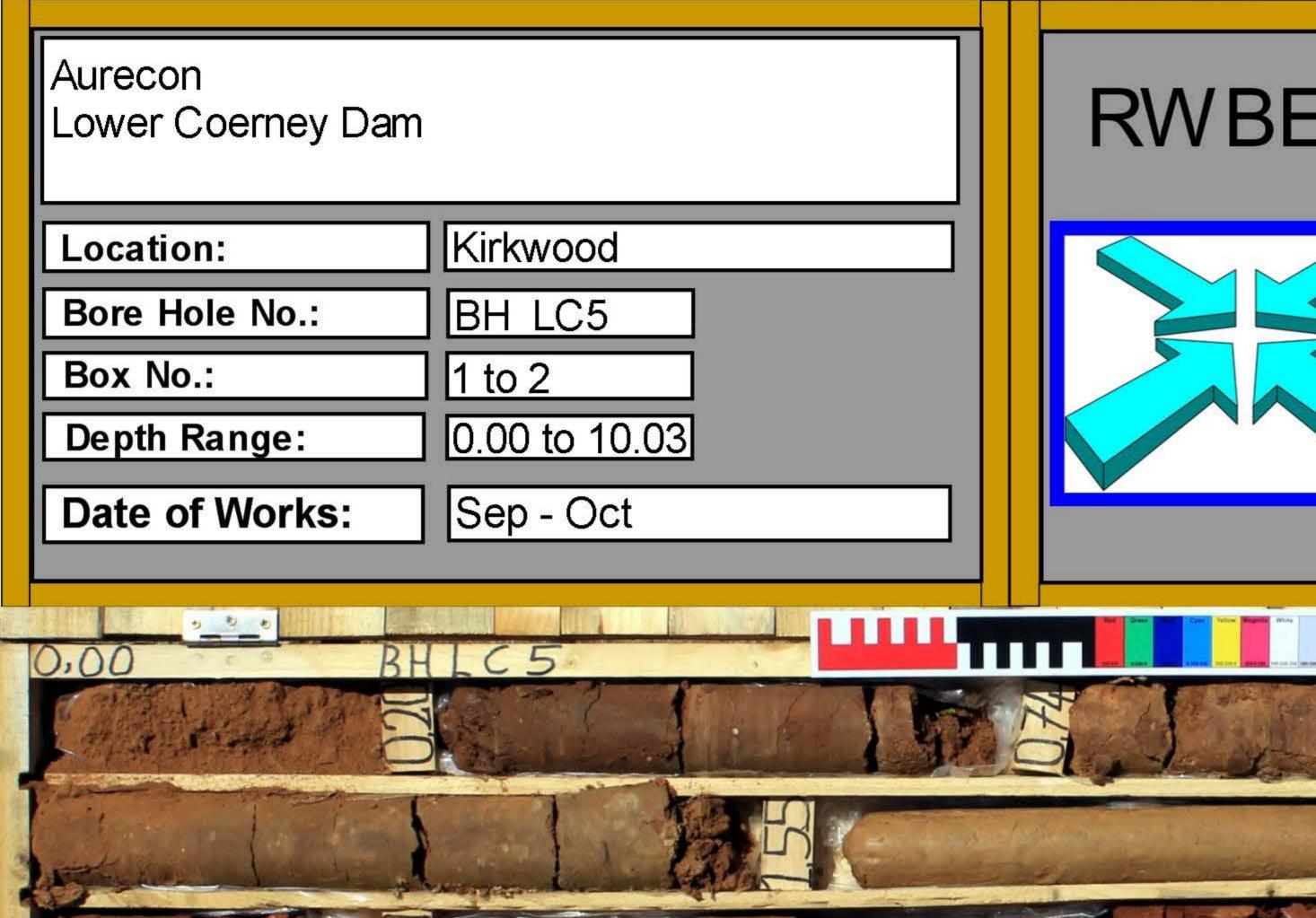

Appendix C: Core photographs

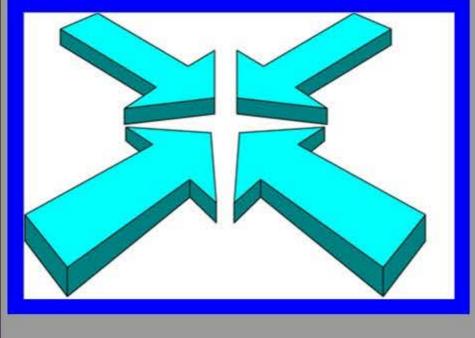


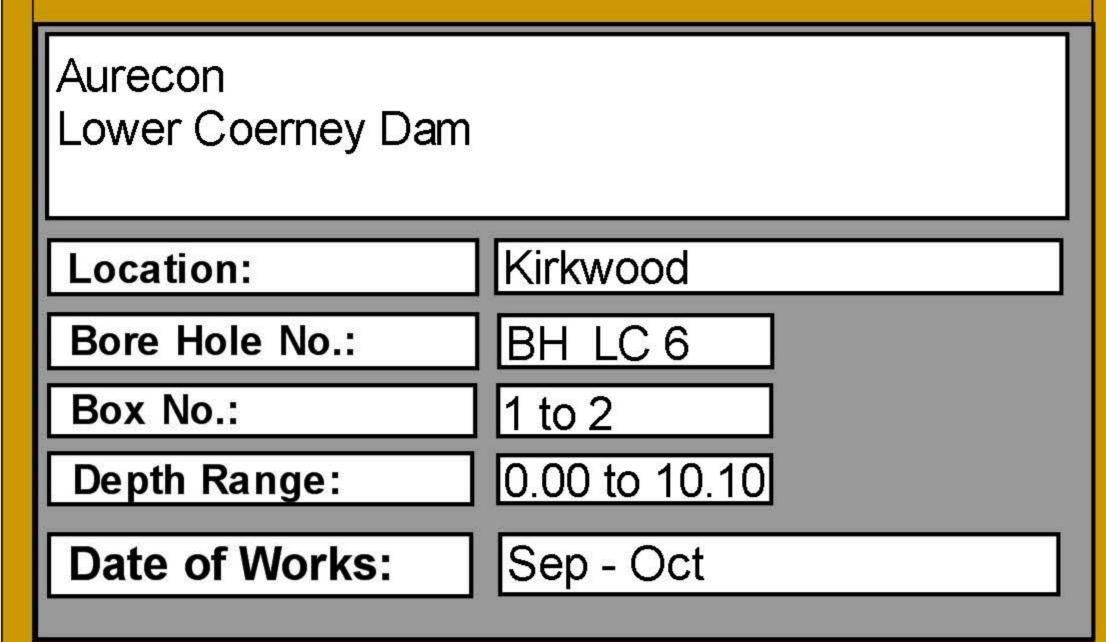


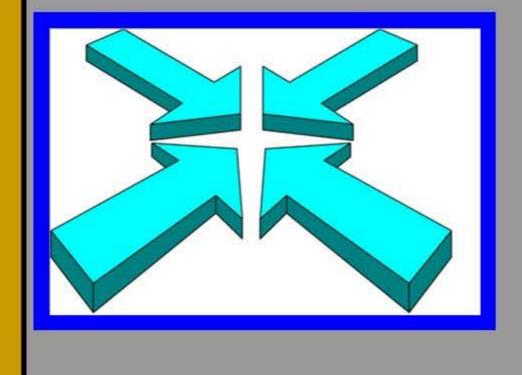


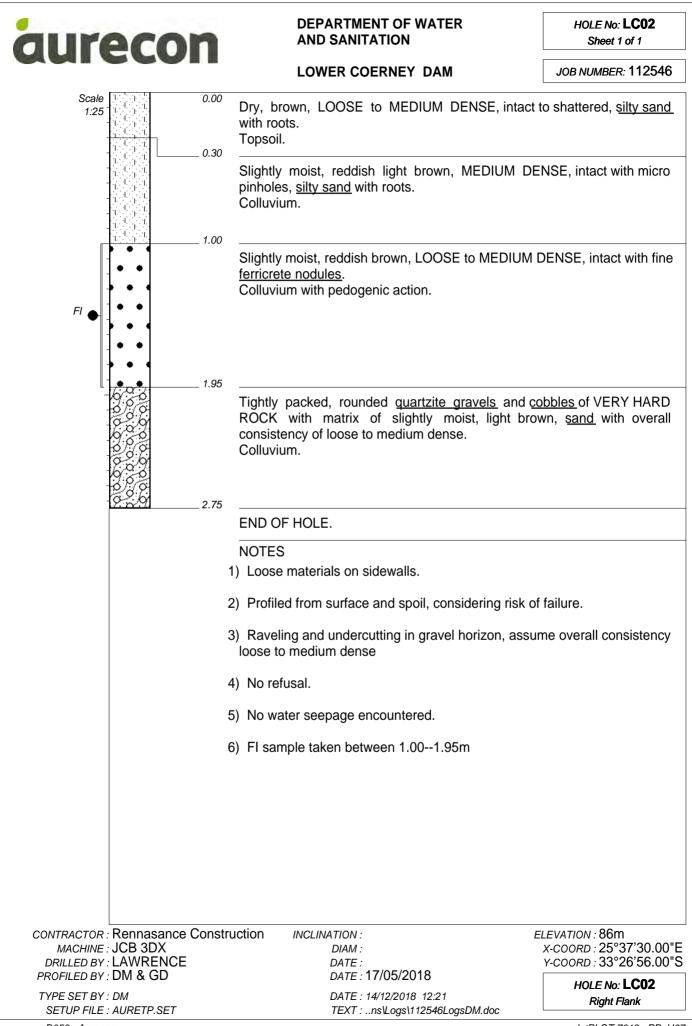


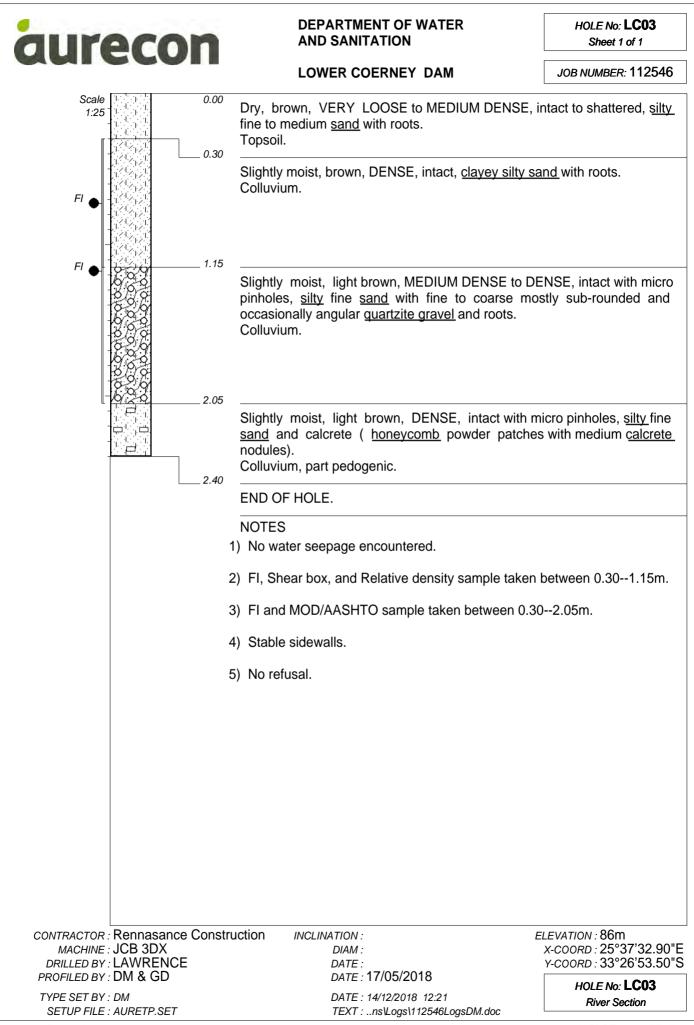


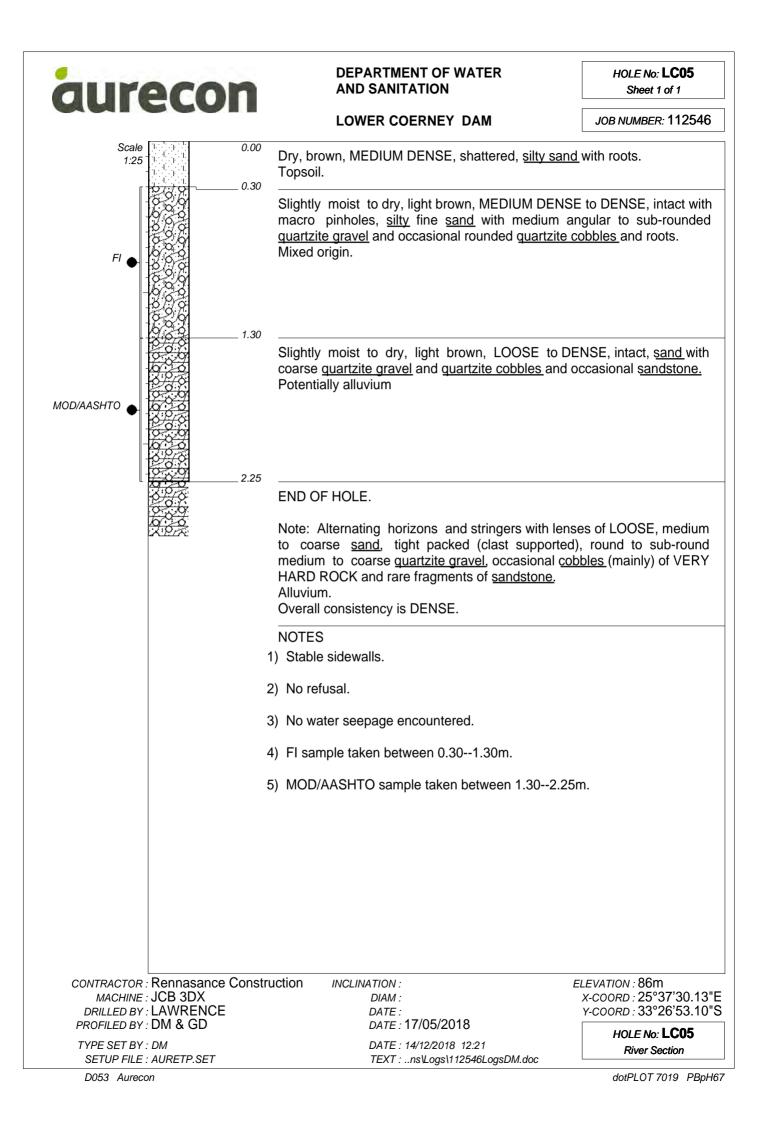


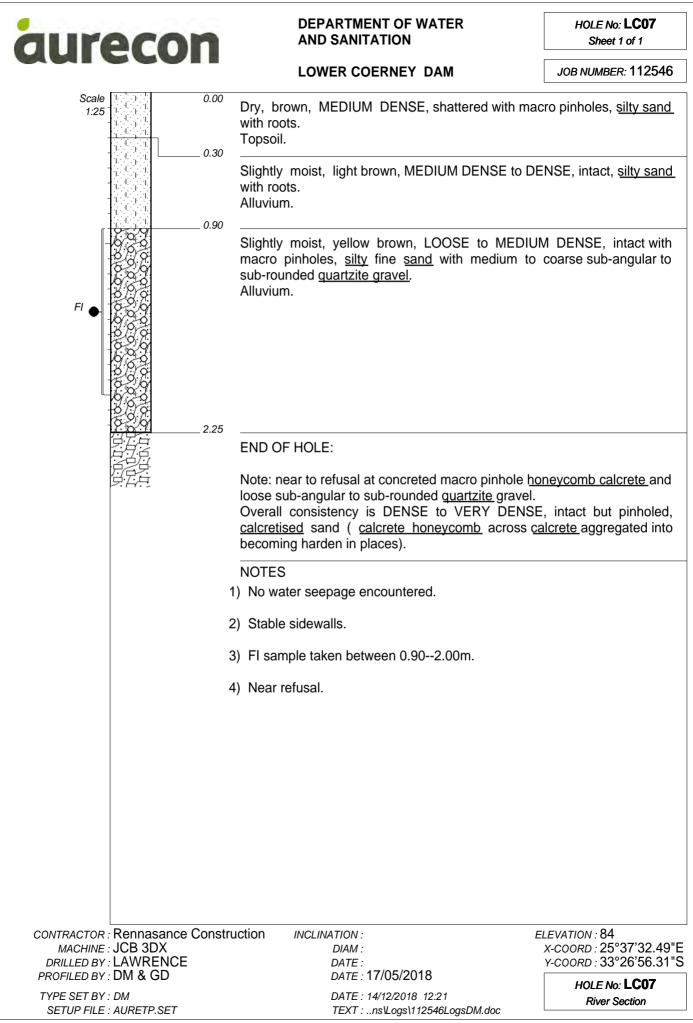


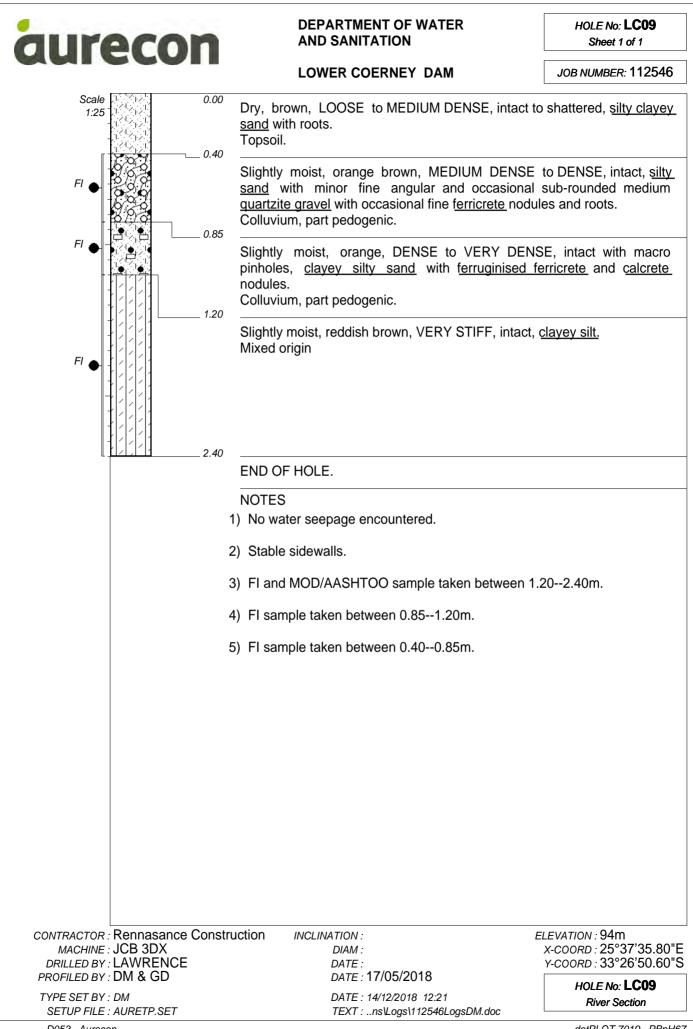







Appendix D: Soil profiles


D053 Aurecon


aur	econ		PARTMENT OF WATER D SANITATION	HOLE No: LC04 Sheet 1 of 1
		LOV	VER COERNEY DAM	JOB NUMBER: 112546
Scale 1:25		Dry, dark brov	vn, DENSE, shattered, <u>silty sar</u>	<u>nd</u> . Topsoil with roots.
 - - FI ← -		coarse angul	VERY DENSE, intact, <u>clayey</u> lar to sub-rounded <u>quartzite</u> izite cobbles and roots.	
-		Slightly moist, Alluvium.	greyish brown, VERY DENSE	, intact, <u>silty clayey sand.</u>
_	1.35	END OF HOL	F	
		NOTES	L.	
			epage encountered.	
		2) Stable sidew	valls.	
		3) FI and MOD	AASHTO sample taken betwe	en 0.301.35m
		4) Near refusal	at 1.35m	
MACHINE :	Rennasance Const JCB 3DX LAWRENCE	ruction INCLI	NATION : DIAM :	ELEVATION : 84m X-COORD : 25°37'31.10"E Y-COORD : 33°26'54.60"S
PROFILED BY :	DM & GD		DATE : DATE : 17/05/2018	HOLE No: LC04
TYPE SET BY : SETUP FILE :	DM AURETP.SET		DATE : 14/12/2018 12:21 TEXT :ns\Logs\112546LogsDM.doc	River Section

aur	econ	DEP AND	PARTMENT OF WATER SANITATION	HOLE No: LC06 Sheet 1 of 1
		LOV	VER COERNEY DAM	JOB NUMBER: 112546
Scale 1.25		 Dry, brown, M animal burrow Topsoil. Dry, reddish I fine <u>calcrete</u> no Colluvium. Slightly moist, VERY DENSE accretion (ger nodules). Colluvium, par END OF HOLI NOTES Stable sidew No water see No refusal, ver 	VER COERNEY DAM MEDIUM DENSE, blocky to s or pinholes, <u>silty sand</u> with ro brown, DENSE, intact, slight odules and roots. , dark brown to reddish brov E, intact, slightly <u>clayey silty</u> herally <u>powder</u> to <u>honeycomb</u> , t pedogenic. E.	JOB NUMBER: 112546 micro blocky with occasional bots. Ity <u>clavey silty sand</u> with minor wn mottled whitish, DENSE to <u>sand</u> with scattered <u>calcrete</u> occasionally associated with
MACHINE . DRILLED BY . PROFILED BY . TYPE SET BY .		struction INCLIN	VATION : DIAM : DATE : DATE : 18/05/2018 DATE : 14/12/2018 12:21 TEXT :ns\Logs\112546LogsDM.doo	ELEVATION : 96m X-COORD : 25°37'38.02"E Y-COORD : 33°26'48.75"S HOLE No: LC06 Left Flank

aurecor	1	DEPARTMENT OF WATER AND SANITATION	HOLE No: LC08 Sheet 1 of 1
		LOWER COERNEY DAM	JOB NUMBER: 112546
Scale 1:25	0.00	Dry, brown, MEDIUM DENSE, occasionally le pinholes, <u>silty sand</u> with roots. Topsoil.	pose, intact with fine
		Slightly moist, pale orange brown, MEDIUM DE with minor pinholes, slightly <u>clayey silty sand</u> with <u>c</u> Colluvium, part pedogenic.	
	0.90	Slightly moist, red brown, DENSE to VERY DENSE silty sand with minor calcrete accretions. Colluvium	
	1.50	END OF HOLE.	
	1	NOTES 1) Stables sidewalls.	
		2) No water seepage encountered.	
		 FI and MOD/AASHTO sample taken between 0.50) 1.50m
			1.5011.
	2	4) No refusal, very slow excavation at 1.50m.	
CONTRACTOR : Rennasance C MACHINE : JCB 3DX	onstru	uction INCLINATION : E	ELEVATION : 103m X-COORD : 25°37'41.20"E
DRILLED BY : LAWRENCE PROFILED BY : DM & GD		DATE : DATE : DATE : 18/05/2018	Y-COORD : 33°26'46.70"S
TYPE SET BY : DM		DATE : 14/12/2018 12:21	HOLE No: LC08 Left Flank
SETUP FILE : AURETP.SET		TEXT :ns\Logs\112546LogsDM.doc	

D053 Aurecon

aure	200	n		PARTMENT OF WATER		HOLE No: LC10 Sheet 1 of 1
			LO	WER COERNEY DAM		JOB NUMBER: 112546
Scale 1:25		0.00	Dry, brown, L <u>sand</u> with root Topsoil.	OOSE to MEDIUM DENS	E, intact wit	h macro pinholes, <u>silty</u>
-		_ 0.30		t, reddish brown, VERY DI <u>ey silty</u> with roots.	ENSE to DE	NSE, intact with minor
- FI ● -	1010-01010-0101 0-010-0-010-0 5-010-0-010-0-01	_ 0.70	sand with		occasional	honeycomb calcrete
		_ 1.60	END OF HOL	E:		
			clayey silty s	ficult or slow excavation, o <u>and</u> with loosely packed <u>els</u> of VERY HARD ROCK	l medium t	
		4	NOTES			
) Stable sidew	alls.		
				ken between 1.001.60m		
				slow excavation at 1.60m.		
MACHINE :	Rennasance (JCB 3DX LAWRENCE DM & GD	Constru	iction INCLI	NATION : DIAM : DATE : DATE : 18/05/2018	E	ELEVATION : 107m X-COORD : 25°37'42.95"E Y-COORD : 33°26'46.30"S HOLE No: LC10
TYPE SET BY : SETUP FILE :	DM AURETP.SET			DATE : 14/12/2018	DM.doc	HOLE NO: LC IV Left Flank
D053 Aureco	n					dotPLOT 7019 PBpH67

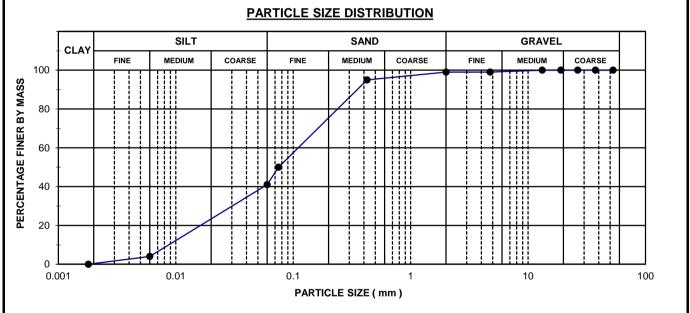
aurecon	DEPARTMENT OF WATER AND SANITATION	HOLE No: LC11 Sheet 1 of 1
adictori	LOWER COERNEY DAM	JOB NUMBER: 112546
Scale 1:25 1:25 1:25 1:25 1:1 1:25 1:1 1:1 1:25 1:1 1:1 1:1 1:1 1:25 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:	Dry, light brown, DENSE, intact with pinholes, <u>silty</u> Topsoil. Dry, orange brown, DENSE, intact, slightly of scattered <u>calcrete</u> nodules and diffuse <u>calcretisation</u> Colluvium. <u>Ferruginised sand</u> , near <u>hardpan ferricrete</u> . Dry, re intact, VERY DENSE, <u>silty</u> to <u>sandy gravel</u> (nodules Pedogenic.	<u>clayey silty sand</u> with <u>n</u> and fine roots. d-brown mottled black,
1.95	END OF HOLE.	
	NOTES 1) Stable sidewalls. 2) No water seepage encountered. 3) FI and MOD/AASHTO compaction sample taken I 4) No refusal, slow excavation at 1.95m.	between 0.501.50m.
CONTRACTOR : Rennasance Const MACHINE : JCB 3DX DRILLED BY : LAWRENCE	DIAM : DATE :	ELEVATION : 92m X-COORD : 25°37'40.42"E Y-COORD : 33°26'52.18"S
PROFILED BY : DM & GD TYPE SET BY : DM SETUP FILE : AURETP.SET	DATE : 18/05/2018 DATE : 14/12/2018 12:21 TEXT :ns\Logs\112546LogsDM.doc	HOLE No: LC11 Left Flank

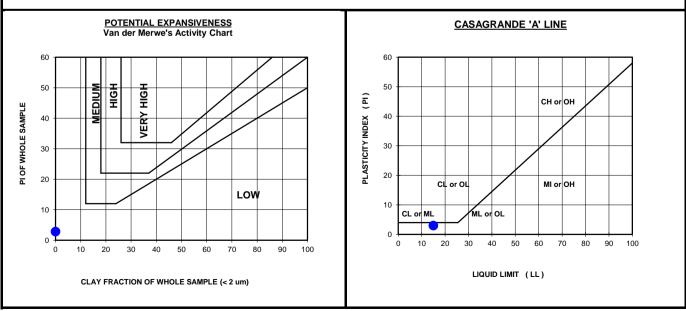
aurecon	DEPARTMENT OF WATER AND SANITATION	HOLE No: LC12 Sheet 1 of 1
	LOWER COERNEY DAM	JOB NUMBER: 112546
Scale 0.00 1:25	Dry, light brown, MEDIUM DENSE occasional DEN with pinholes, <u>silty sand</u> with roots. Topsoil.	ISE, intact to shattered
	Dry, orange brown, DENSE, intact, <u>silty sand</u> with generally medium to coarse <u>quartzite cobbles/ g</u> ROCK and minor <u>sandstone</u> . Colluvium.	
	3	
	Tightly packed generally comprising fine to coarse gravel and occasional <u>cobbles</u> of VERY HAR MEDIUM HARD ROCK <u>sandstone</u> with matrix of fi traces of <u>calcrete</u> . Alluvium.	D ROCK, occasional
2.3	5 END OF HOLE.	
	NOTES 1) Sidewalls stable.	
	2) No water seepage encountered.	
	3) No sample taken.	
	4) Refusal on boulders at 2.35m.	
CONTRACTOR : Rennasance Cons MACHINE : JCB 3DX DRILLED BY : LAWRENCE PROFILED BY : DM & GD	struction INCLINATION : E DIAM : DATE : DATE : 18/05/2018	ELEVATION : 84m X-COORD : 25°37'39.45"E Y-COORD : 33°26'57.59"S
TYPE SET BY : DM & GD SETUP FILE : AURETP.SET	DATE : 16/05/2018 DATE : 14/12/2018 12:21 TEXT :ns\Logs\112546LogsDM.doc	HOLE No: LC12 River Section

aur	econ	DEPARTMENT OF WATER AND SANITATION	HOLE No: LC20 Sheet 1 of 1
		LOWER COERNEY DAM	JOB NUMBER: 112546
Scale 1:25 ⁻	0.00	Dry, brown, MEDIUM DENSE, intact to blocky, <u>silty</u> Topsoil.	sand with roots.
-		Dry, red brown, DENSE, intact, ferruginised <u>silty</u> <u>ferricrete</u> nodules. Colluvium, partly pedogenic.	sand with minor fine
FI •		Slightly moist, dark red-brown, VERY DENSE, intac <u>clayey silty sand</u> with fine <u>ferricrete</u> nodules, als <u>accretions</u> with medium irregular nodules. Pedogenic.	
- - -			
		END OF HOLE. Note: <u>Ferruginised clayey silty sand</u> with mediur sub-rounded <u>gravels</u> of VERY HARD ROCK in plac (aggregated nodules).	
		NOTES 1) No refusal, very slow excavation at 1.95m.	
		2) No water seepage encountered.	
		3) Stable sidewalls.	
		4) FI and MOD/AASHTO compaction sample taken b	etween 0.901.95m.
001/7010705	Popposance Care		1 EVATION - 07m
MACHINE : DRILLED BY :	Rennasance Cons JCB 3DX LAWRENCE	DIAM : DATE :	LEVATION : 97m X-COORD : 33°26'38.34"S Y-COORD : 25°37'31.93"E
PROFILED BY : TYPE SET BY : SETUP FILE :		DATE : 18/05/2018 DATE : 14/12/2018 12:21 TEXT :ns\Logs\112546LogsDM.doc	HOLE No: LC20 Basin Area
D053 Aureco			dotPLOT 7019 PBpH67

aure	con	DEPARTMENT OF WATER AND SANITATION	HOLE No: LC22 Sheet 1 of 1
		LOWER COERNEY DAM	JOB NUMBER: 112546
Scale 1:25	0.00	Dry, brown, MEDIUM DENSE, intact with pinholes, Topsoil.	silty sand and roots.
		Dry, pale orange, DENSE, intact, <u>silty sand</u> . Colluvium.	
D D D D D D D D D D D D D D D D D D D		Note: At 0.55m poorly developed, LOOSELY pack sub-angular to sub-rounded quartzite gravels (not p	
		Dry, pale orange, DENSE, intact, <u>silty sand</u> with coarse sub-round <u>quartzite gravels</u> of VERY HAF <u>accretions</u> more abundant near base. Terrace gravel, partly pedogenic.	
		Tightly packed, medium to coarse rounded to s <u>gravels</u> and occasional <u>cobbles</u> and <u>boulders</u> of VE occasional <u>calcrete</u> within horizon, matrix of VERY Terrace gravel, partly pedogenic.	RY HARD ROCK with
	2.40	END OF HOLE.	
		NOTES	
		1) No water seepage encountered.	
		2) No sample taken.	
		3) Stable sidewalls with caving.	
		 Assessed refusal, on spoil, pieces of <u>hardpan</u> <u>gravels</u> and cobbles. 	calcrete to cemented
CONTRACTOR : Ren MACHINE : JCB	3DX	DIAM :	ELEVATION : 89m X-COORD : 25°37'20.34"E
DRILLED BY : LAW PROFILED BY : DM		DATE : DATE : 18/05/2018	Y-COORD : 33°26'40.45"S HOLE No: LC22
TYPE SET BY : DM SETUP FILE : AURE	ETP.SET	DATE : 14/12/2018	Basin Area

aurecon	DEPARTMENT OF WATER AND SANITATION	HOLE No: LC23 Sheet 1 of 1
	LOWER COERNEY DAM	JOB NUMBER: 112546
Scale 1:25 0.00 0.25 FI 0.25	Dry, brown, MEDIUM DENSE to DENSE, intact slightly <u>silty sand</u> and roots. Topsoil.	r <u>clayey silty sand</u> with se q <u>uartzite gravel</u> and depth and occasional
2.25	END OF HOLE.	
	NOTES	
	1) No water seepage encountered.	
	2) FI, Proctor compaction and shear box sar 0.502.00m.	nple taken between
	3) No refusal.	
	4) Stable sidewalls.	
CONTRACTOR : Rennasance Const MACHINE : JCB 3DX	truction INCLINATION : E	LEVATION : 94m X-COORD : 25°37'15.33"E
DRILLED BY : LAWRENCE PROFILED BY : DM & GD	DATE : DATE : 18/05/2018	Y-COORD : 33°26'40.96"S
TYPE SET BY : DM SETUP FILE : AURETP.SET	DATE : 14/12/2018	Basin Area


Appendix E: Laboratory test data



FOUNDATION INDICATOR TEST RESULTS

TEST LOCATION	LC03	PROJECT	Algoa Water Supply System
SAMPLE NO.	S98988	PROJECT NUMBER	112546
DEPTH	0.3-2.05 m	SITE	Lower Coerney

	SIEVE A	NALYSIS		ATTERBERG LIMITS			SOIL CLASSIFICATION		
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTENDENGL	/11V11 1)	5	SOIL CLASSIFICATION		
53.000	100	0.075	50	Liquid limit	(%)	15	% Gravel	1	
37.500	100	0.060	41	Plastic limit	(%)	12	% Sand	58	
26.500	100	0.006	4	Plasticity Index	(%)	3	% Silt	41	
19.000	100	0.0018	0	Weighted PI	(%)	3	% Clay	0	
13.200	100			Linear Shrinkage	(%)	1.5	Activity	#DIV/0!	
4.750	99			Grading Modulus		0.56	Unified Classification	SM	
2.000	99			Uniformity coefficient		10	TRB Classification	A - 4	
0.425	95			Coefficient of curvature		0.9			

Aurecon SA 4 Daventry Street

Lynwood Ridge

CIVIL ENGINEERING MATERIALS LABORATORY Reg.No. 2014/263692/07

56 Uitenhage Road, Sydenham, PE, 6001 PO Box 27067, Greenacres, PE, 6057 Tel: +27 (0)41 487-3130 • Fax: +27 (0)41 487-3160 E-mail: info@toscalab.co.za ISO/IEC 17025 ACCREDITED

PROJECT : Kirkwood 112546 JOB/ROAD : C19226 REPORT DATE: 27.06.2018

CLIENT:

		T		SAMPLING PR				
	2	S98987	S98988	S98988	S98989	S98990	S98991	S98992
SAMPLE NUMBER	3	LC2	LC3	LC3	LC3	LC4	LC5	LC5
POSITION			0.3-2.05	0.3-1.15	0.3-2.05	0.3-1.35	0.3-1.3	1.3-2.75
DEPTH (M) DESCRIPTION		1.0-1.95 Colluvium with fine FeO	Colluvium (Small)	Colluvium (Un- Disturbed)	Colluvium (Large)	Alluvium	Mixed Origin	Potentially Alluvium
		Nodules CL	SM	SM	SM	SC	SM/SC	SC
JNIFIED SOIL CL	ASSIFICATION	GL	SIM	OW				
IRB CLASSIFICA	TION			T - L Marthad Ad Af	0 42 45 8 46			
		SIEVE ANA	LYSIS - TMH 1	Test Method A1, A2	2, A3, A3 & A0			
PASSING	75.0 mm							
	63.0 mm							100
	53.0 mm					100		97
	37.5 mm					98		95
	26.5 mm					95		90
	19.0 mm		100	100	100	95	100	80
	13.2 mm		100	100	100 99	94	98	56
	4.75 mm	100	99	99		91	97	47
	2.00 mm	99	99	98	99	84	85	29
	0.425 mm	95	95	94	94	49	41	13
	0.075 mm	76	50	47	45		30	8
	0.060 mm	63	41	36	34	33	3	1
	0.006 mm	4	4	5	3	5	0	0
	0.0018 mm	0	0	1	0	1	0	
		SOIL N	NORTAR ANAL	YSIS - TMH 1 Test		-7	12	39
-	2.000 - 0.425	4	4	5	5	7	12	16
Soil Mortar Analysis s < 2.00mm	0.425 - 0.250	4	12	13	15	9		12
Soil Mortar Analysis 6 < 2.00mm	0.250 - 0.150	7	17	18	19	17	18	6
And And And	0.150 - 0.075	8	16	17	16	13	A CONTRACTOR OF	29
\$ N	< 0.075	78	50	48	45	55	43	
GRADING MODU	JLUS	0,30	0,57	0,61	0,62	0,77	0,78	2,11
		ATTE	RBERG LIMITS	: TMH 1 Test Meth	od A2 - A4		45	10
LIQUID LIMIT		21	15	15	-	17	15	49
PLASTICITY IND	DEX	7	3	4	SP	7	5	
LINEAR SHRINK		3,5	1,5	2,0	1,0	3,5	2,5	10,0
		PROCTOR : MO	DISTURE DENS	ITY RELATIONSH		14		
Maximum Procto	r Density (Kg/m ³)	-	-	-	1857	1868	-	-
O.M.C. (%)		-	-	-	11,1	12,7	-	-
		REL		OF SOIL: TMH1	1986 A121	2 570		-
RELATIVE DEN	SITY	-	2,600	-	-	2,570		
		MOI		NT: SANS 3001:G	R20:2010	61	-	T -
MOISTURE COM	NTENT	-	9,8	AND DISPERSIVE	TESTS	6,1		
		<i>P</i>				3.16 x 10-	8	
PERMEABILITY	(m/s)			2.31 x 10 ⁻⁷	40,13	48,3		
	OMETER : ASTM D422 (%)			35,97	40,13 ND 3	ND 2		
PINHOLE TEST	: ASTM D4647			ND 3		Grade 2		
CRUMB TEST :	BS1377 (1990) PART 5: 6.3			Grade 2 <i>x TEST : BS 1377 (</i>	Grade 2			
		10000000000000000000000000000000000000			35,4	43,2		3
MAXIMUM EFFECT	TIVE SHEAR STRESS σ'd (kPa)		36,5 18,3	38,1 19,2	20,2	26,4		
	ON ANGLE (degrees)		102	147	////	20.4		

The above test results are pertinent only to the samples received and tested at the laboratory. This rep Tosca Lab (Pty)Ltd. Name :

Page 1 of 5

Position :

CIVIL ENGINEERING MATERIALS LABORATORY Reg.No. 2014/263692/07

56 Uitenhage Road, Sydenham, PE, 6001 PO Box 27067, Greenacres, PE, 6057 Tel: +27 (0)41 487-3130 • Fax: +27 (0)41 487-3160 E-mail: info@toscalab.co.za

Testing Laboratory T 0481

ISO/IEC 17025 ACCREDITED

CLIENT: Aurecon SA 4 Daventry Street

Lynwood Ridge

PROJECT : Kirkwood 112546 **JOB/ROAD** : C19226 **REPORT DATE: 27.06.2018**

			RESULTS	PROCEDURE:			
SAMPLE NUME	3FR	S98993	S98994	S98995	S98996	S98997	S98998
POSITION		LC6	LC7	LC8	LC9	LC9	LC9
		0.5-1.65	0.9-2	0.5-1.5	0.4-0.85	0.85-1.2	1.2-2.4
DEPTH (M) DESCRIPTION		Colluvium Part Pedogenic	Alluvium	Colluvium Part Pedogenic	Colluvium with Fine FeO Nodules	Colluvium part Pedogenic	Mixed Origi
UNIFIED SOIL	CLASSIFICATION	CL	CL	CL	CL	GC	CL
HRB CLASSIFI	CATION						
		EVE ANALYSIS -	TMH 1 Test Met	hod A1, A2, A3, A5	5 & A6		
PASSING	75.0 mm						
Tribolito	63.0 mm						
	53.0 mm						
	37.5 mm					100	
	26.5 mm					96	
	19.0 mm					90	100
		100		100		83	99
	13.2 mm	99		98		61	96
	4.75 mm	99	100	97	100	52	94
	2.00 mm	96	97	96	98	45	89
	0.425 mm	75	65	70	81	25	79
	0.075 mm	53	51	58	57	18	66
	0.060 mm		3	1	3	2	11
	0.006 mm	5	0	0	0	0	4
	0.0018 mm			MH 1 Test Method .		0	
	2.000 - 0.425	2	3	2	2	14	5
E SE	0.425 - 0.250	3	7	3	2	13	2
lort: ysis	0.250 - 0.150	8	12	10	6	13	3
Soil Mortar Analysis 6 < 2.00mm	0.150 - 0.075	11	14	14	9	13	6
° Sc	< 0.075	76	65	72	81	48	84
GRADING MOI		0,31	0,38	0,38	0,22	1,79	0,38
GRADING MOL	DULUS			Test Method A2 - A		1,70	0,00
LIQUID LIMIT		32	25	26	37	30	39
PLASTICITY IN	IDEX	18	11	12	19	18	18
		9,0	5,5	6,0	9,5	9,0	9,0
LINEAR SHRIN	PROCT	OR : MOISTURE		ATIONSHIP : BS 13			010
Movimum Dr	tor Density (Kg/m ³)	1676	-	1759		-	1617
O.M.C. (%)	tor Density (Kg/ii)	18,9	-	17,8		-	23,8
0.101.0. (%)			NSITY OF SOIL	: TMH1 1986 A12	T		
RELATIVE DEM	NSITY	2,560	-	-	2,580	-	-
NELATIVE DEI			ONTENT: SAN	S 3001:GR20:2010			
MOISTURE CO	NTENT	12,4	-	8,3	-	-	17,3
WOIDTORE UC			ILITY AND DISF	PERSIVE TESTS	1		
PERMEABILIT	V (m/s)	4.11 x 10 ⁻⁹		3.72 x 10 ⁻⁸			
strain balls solution of the strain to the		4.11 x 10 43,26		J.12 A TU			
	ROMETER : ASTM D422 (%)	43,20 ND 2					
	T : ASTM D4647	Grade 3					
CRUMB TEST	: BS1377 (1990) PART 5: 6.3		ARBOX TEST . P	3S 1377 (1990) PA	RT7:4/5		
		41,6		40,9			32,8
				40.0			02,0
	TIVE SHEAR STRESS σ'd (kPa) TION ANGLE (degrees)	21,4		24,7	-		23,3

The above test results are pertinent only to the samples received and tested at the laboratory. This report shall not be reproduced, except in full, without the prior consent of Tosca Lab (Pty)Ltd.

Page 2 of 5

Aurecon SA 4 Daventry Street

CLIENT:

Reg.No. 2014/263692/07

Lynwood Ridge

56 Uitenhage Road, Sydenham, PE, 6001 PO Box 27067, Greenacres, PE, 6057 Tel: +27 (0)41 487-3130 • Fax: +27 (0)41 487-3160 E-mail: info@toscalab.co.za

ISO/IEC 17025 ACCREDITED

PROJECT : Kirkwood 112546 JOB/ROAD : C19226 REPORT DATE : 27.06.2018

		TEST	RESULT SU	MMARY			
SAMPLE NUM	IBER	S98999	S99000	S99001	S99002	S99003	S99004
POSITION		LC10	LC11	LC20	LC23	US1	US2
DEPTH (M)		1.0-1.6	0.5-1.5	0.9-1.95	0.5-2.0	1.1-1.4	0.1-1.5
DESCRIPTION		Colluvium Part Pedogenic	Pedogenic	Pedogenic	Colluvium	Pedogenic	Colluvium part Pedogenic
UNIFIED SOIL CLASSIFICATION		CL	SC	CL	CL	CL	CL
		UL	00				
HRB CLASSIF			TAUL 4 Test Mothe	d A1, A2, A3, A5 a	P 16		
		E ANALYSIS - I	INFIT Test Metho	M AT, AZ, AS, AS C	X AO		
PASSING	75.0 mm						
	63.0 mm						
	53.0 mm		400				
	37.5 mm		100			100	
	26.5 mm		94		100	100 99	100
	19.0 mm	400	89	400	100	99	99
	13.2 mm	100	86	100	99		99
	4.75 mm	99	73	97	97	91	97
	2.00 mm	98	60	96	96	87	88
	0.425 mm	95	40	91	95	83	
	0.075 mm	76	32	80	50	60	77
	0.060 mm	62	23	64	35	50	77
	0.006 mm	1	2	3	5	1	9
	0.0018 mm	0	1	0	1	0	3
				1 1 Test Method A			1 0
. E	2.000 - 0.425	3	34	5	2	4	6
ortal sis Omr	0.425 - 0.250	3	2	1	5	3	2
Mo aly 2.0	0.250 - 0.150	7	5	4	23	8	4
Soil Mortar Analysis % < 2.00mm	0.150 - 0.075	10	6	6	19	15	6
~ ~	< 0.075	78	54	84	52	70	82
GRADING MC	DULUS	0,32	1,68	0,33	0,59	0,70	0,40
				st Method A2 - A4			1
LIQUID LIMIT		29	31	39	19	27	20
PLASTICITY I	NDEX	15	10	20	7	12	7
LINEAR SHRI	NKAGE	7,5	5,0	10,0	3,5	6,0	3,5
	PROCTO	R : MOISTURE		IONSHIP : BS 137			1
Maximum Pro	ctor Density (Kg/m ³)	2 H	1522	1739	1826	-	-
O.M.C. (%)		-	21,7	22,6	11,7	-	-
		RELATIVE DEI	NSITY OF SOIL:	TMH1 1986 A12T		·	
RELATIVE DE	ENSITY	-	-	-	-		-
_		MOISTURE C	ONTENT: SANS				
MOISTURE C	ONTENT	-	-	10,9	5,1	-	-
		PERMEABI	LITY AND DISPE				
PERMEABILI	TY(m/s)		1.88 x 10 -8	2.62 x 10 -9			
	DROMETER : ASTM D422 (%)						
PINHOLE TES	ST : ASTM D4647						
CRUMB TEST	Г : BS1377 (1990) PART 5: 6.3						
		ED SLOW SHEA	RBOX TEST : BS	1377 (1990) PAR		-	
MAXIMUM EFFE	CTIVE SHEAR STRESS o'd (kPa)		33,9	35,7	33,4		
APPARENT FRIC	CTION ANGLE (degrees)		20,2	24,8	19,2		
	ty (kg/m ³)		1434	1596	1682		

The above test results are pertinent only to the samples received and tested at the laboratory. This report shall not be reproduced, except in full, while the prior consent of Tosca Lab (Pty)Ltd.

62

CIVIL ENGINEERING MATERIALS LABORATORY Reg.No. 2014/263692/07

CLIENT: Aurecon SA 4 Daventry Street Lynwood Ridge 56 Uitenhage Road, Sydenham, PE, 6001 PO Box 27067, Greenacres, PE, 6057 Tel: +27 (0)41 487-3130 • Fax: +27 (0)41 487-3160 E-mail: info@toscalab.co.za ISO/IEC 17025 ACCREDITED

PROJECT : Kirkwood 112546 JOB/ROAD : C19226 REPORT DATE : 27.06.2018

				ROCEDURE:	RY			
SAMPLE NUMB	EP	S99005	S99006	S99007	S99007	S99008	S99009	S99010
		US3	US4	US5	US5	US5	US6	US7
POSITION				0.2-1.1	0.2-1.1	0.7-2.8	0.5-2.0	0.2-1.0
DEPTH (M)		0.6-1.5	0.2-0.7	0.2-1.1	0.2-1.1	0.7-2.0		0.2 1.0
DESCRIPTION		Colluvium, Part Pedogenic	Colluvium	Colluvium (Undisturbed)	Colluvium	Colluvium	Colluvium Part Pedogenic	Pedogenio
UNIFIED SOIL (CLASSIFICATION	CL	CL	CL	CL	CL	CL-ML	SC
HRB CLASSIFIC	CATION							
		SIEVE ANAL	YSIS - TMH 1	Test Method A1, A2	2, A3, A5 & A6			
PASSING	75.0 mm	T						
Addino	63.0 mm							
	53.0 mm							
	37.5 mm	100						100
	26.5 mm	97	100	100	100	100		97
	19.0 mm	96	99	96	95	98		89
	13.2 mm	95	97	92	92	97		83
	4.75 mm	88	93	85	83	95		62
	2.00 mm	78	91	80	78	94	100	51
	0.425 mm	69	89	76	74	93	96	40
	0.425 mm	53	59	61	50	73	51	23
	N 82783	36	50	55	39	61	41	17
	0.060 mm	4	1	3	2	3	3	1
	0.006 mm	0	0	0	0	0	1	0
	0.0018 mm			SIS - TMH 1 Test				
	2.000 - 0.425	12	2	5	6	2	4	22
ته « E	0.425 - 0.250	3	3	3	4	3	11	8
lort ysis 00n	0.250 - 0.150	7	12	7	10	8	18	13
Soil Mortar Analysis 6 < 2.00mm	0.150 - 0.075	10	18	9	16	11	16	11
So %	< 0.075	69	65	76	64	77	52	45
GRADING MOD		1,00	0,61	0,84	0,98	0,41	0,53	1,87
GRADING WOL	JULU3		BERG LIMITS :	TMH 1 Test Metho			1 1 1	
LIQUID LIMIT		29	23	30	32	26	16	34
		16	10	14	16	12	4	11
PLASTICITY IN		8,0	5,0	7,0	8,0	6,0	2,0	5,5
LINEAR SHRIN	NAGE	PROCTOR : MOI	STURE DENSI	TY RELATIONSHIP				
Maulauta Darat	or Donaity (Ka/m ³)	1682	-	-	-	1684	1743	-
and the second se	or Density (Kg/m ³)	18,3	_	-		18,9	16,5	
O.M.C. (%)		RELAT	TIVE DENSITY	OF SOIL: TMH1 19	986 A12T	1000 To 1070		
RELATIVE DEN	ISITY	2,570	-	2,600	-	-	2,580	-
NECATIVE DEP		MOIS		IT: SANS 3001:GF	20:2010			
MOISTURE CO	NTENT	14,3	-	11,2	-	10,2	12,8	-
		PE	RMEABILITY A	ND DISPERSIVE T	ESTS			
DERMEADILITY	V (m/s)	6.13 x 10-9		4.51 x 10-8			1.63 x 10-7	
PERMEABILITY (m/s)		0.10 / 10 0				43,11	31,27	
DOUBLE HYDROMETER : ASTM D422 (%) PINHOLE TEST : ASTM D4647						ND 3	ND 3	
	: BS1377 (1990) PART 5: 6.3					Grade 3	Grade 2	
URUIND 1591	, DOTOTT (1990) FART 0. 0.0	DRAINED SLO	W SHEARBOX	TEST : BS 1377 (1	990) PART 7 :4 /			
	TIVE SHEAR STRESS σ'd (kPa)	39,6		33,5		31,6	38,1	
		21,3		22,4		23,8	19,4	
PPARENT FRICT	TION ANGLE (degrees)	21,0	and the second second	1611		1563	1600	

The above test results are pertinent only to the samples received and tested at the laboratory. This report shall not be reproduced, except Tosca Lab (Pty)Ltd. Name :

Frederik Efb Technical Sgr

TSF 62

Aurecon SA 4 Daventry Street

Lynwood Ridge

CLIENT:

CIVIL ENGINEERING MATERIALS LABORATORY Reg.No. 2014/263692/07 56 Uitenhage Road, Sydenham, PE, 6001 PO Box 27067, Greenacres, PE, 6057 Tel: +27 (0)41 487-3130 • Fax: +27 (0)41 487-3160 E-mail: info@toscalab.co.za

ISO/IEC 17025 ACCREDITED

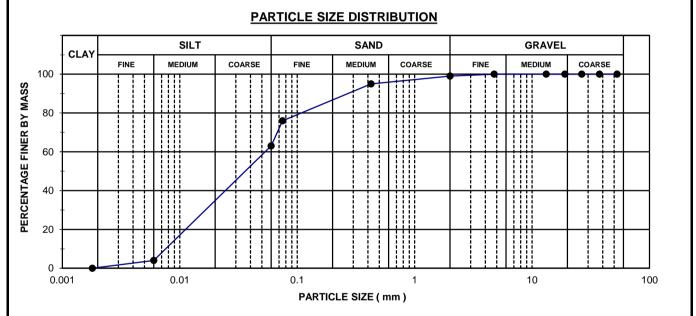
PROJECT : Kirkwood 112546 JOB/ROAD : C19226 REPORT DATE : 27.06.2018

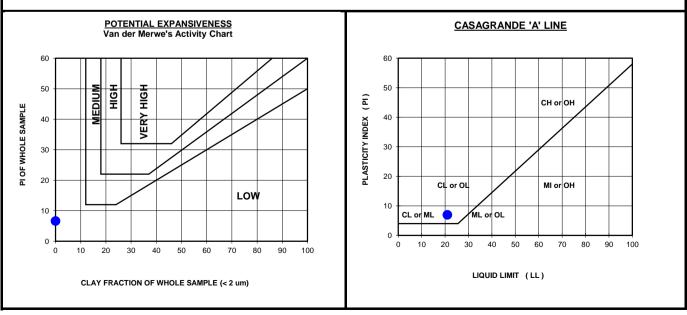
ATT: N	Mr. G Davies		SAMPLING PI		Delivered to t	le Laboratory	
		TEST	RESULT SU			Construction of the second second	
SAMPLE NUME	BER	S99011	S99012	S99013	S99014	S99015	S99016
POSITION		US10	US21	US22	US23	US24	US25
DEPTH (M)		0.45-1.25	0.0-1.45	0.5-2.0	0.5-1.7	0.5-1.5	0.5-1.3
DESCRIPTION		Residual Sand	Colluvium	Colluvium Part Pedogenic	Colluvium part Pedogenic	Colluvium Part Pedogenic	Pedogeni
UNIFIED SOIL	CLASSIFICATION	SC / SM	CL	CL	CL	CL	CL
HRB CLASSIFI	CATION						
	SIE	EVE ANALYSIS -	TMH 1 Test Meth	od A1, A2, A3, A3	5 & A6		
PASSING	75.0 mm						
Addite	63.0 mm						
	53.0 mm	100					
	37.5 mm	94					
		92		100			100
		88		98	100		97
	19.0 mm	82		98	99		95
	13.2 mm	the state of the s	100	89	96		88
	4.75 mm	69		and the second	98	100	82
	2.00 mm	64	99	81	1806265	144/2002/201	76
	0.425 mm	59	98	70	88	99	63
	0.075 mm	28	64	60	74	74	
	0.060 mm	23	46	46	48	60	57
	0.006 mm	2	1	1	5	8	2
	0.0018 mm	0	0	0	0	2	0
			ANALYSIS - TM				
E	2.000 - 0.425	7	1	14	5	1	7
rtar sis	0.425 - 0.250	10	4	2	2	2	3
Mo alys	0.250 - 0.150	21	11	5	5	9	6
Soil Mortar Analysis % < 2.00mm	0.150 - 0.075	18	20	6	9	14	8
٥`»	< 0.075	44	64	73	80	75	77
GRADING MOL	DULUS	1,49	0,39	0,89	0,45	0,28	0,79
			IMITS : TMH 1 Te	est Method A2 - A	14		
LIQUID LIMIT		19	27	41	26	27	39
PLASTICITY IN	JDEX	6	12	21	12	14	20
LINEAR SHRIN		3,0	6,0	10,5	6,0	7,0	10,0
			DENSITY RELAT				
Maximum Proof	tor Density (Kg/m ³)	-	1779	1635	=	1730	-
O.M.C. (%)	to Density (Ngrin)	-	17,3	19,8	-	16,6	-
0.IWI.O. (10)		RELATIVE DE	NSITY OF SOIL:		T	1. (*)	
RELATIVE DEM	NSITY	-	2,610	-	-	-	2,600
			ONTENT: SANS	3001:GR20:2010)		
MOISTURE CC	NITENT		9,7	10,7	-	10,1	-
WOISTORE CC		PERMEAR	ILITY AND DISPE		1		
	V (m/c)	T	5.02 x 10-9				
PERMEABILIT			0.02 × 10-0			38,72	
	ROMETER : ASTM D422 (%)					ND 3	
	T : ASTM D4647			-		Grade 2	
CRUMB TEST	: BS1377 (1990) PART 5: 6.3		ARBOX TEST : BS	1377 (1990) PA	RT7:4/5	Ulade Z	
						34,3	
	TIVE SHEAR STRESS σ'd (kPa)		37,3			20,2	
	TION ANGLE (degrees)		21,9			1595	
Noulded Density	y (kg/m³) results are pertinent only to the s		1635				,

the prior consent of Tosca Lab (Pty)Ltd.

i,	0	m	-	N	
	IF	m	a	N	

Position :

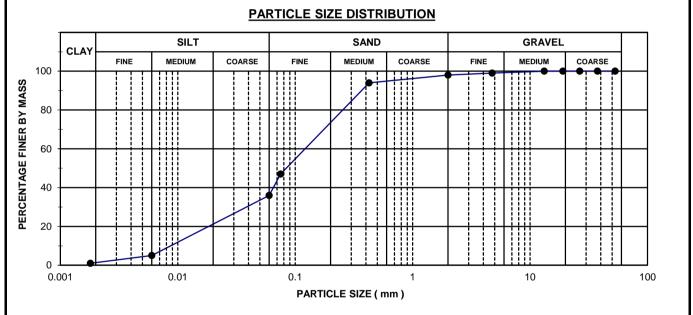

SF 62

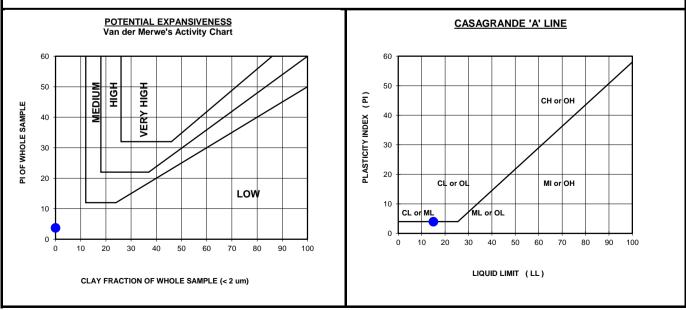


FOUNDATION INDICATOR TEST RESULTS

TEST LOCATION	LC02	PROJECT	Algoa Water Supply System
SAMPLE NO.	S98987	PROJECT NUMBER	112546
DEPTH	1.0-1.95 m	SITE	Lower Coerney

	SIEVE ANALYSIS			ATTERBERG LIMITS			SOIL CLASSIFICATION		
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDERG LIVITIS			SOIL CLASSIFICATION		
53.000	100	0.075	76	Liquid limit	(%)	21	% Gravel	1	
37.500	100	0.060	63	Plastic limit	(%)	14	% Sand	36	
26.500	100	0.006	4	Plasticity Index	(%)	7	% Silt	63	
19.000	100	0.0018	0	Weighted PI	(%)	7	% Clay	0	
13.200	100			Linear Shrinkage	(%)	3.5	Activity	#DIV/0!	
4.750	100			Grading Modulus		0.30	Unified Classification	CL	
2.000	99			Uniformity coefficient		5	TRB Classification	A - 4	
0.425	95			Coefficient of curvature		1.3			

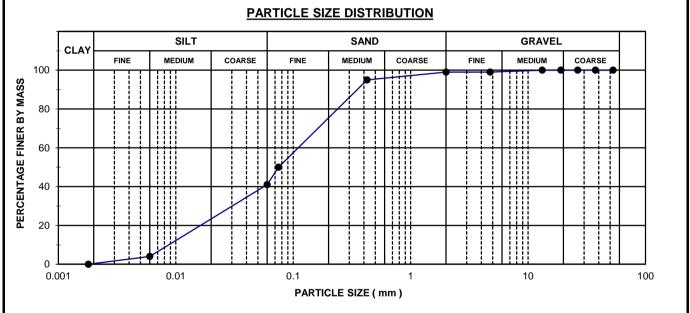


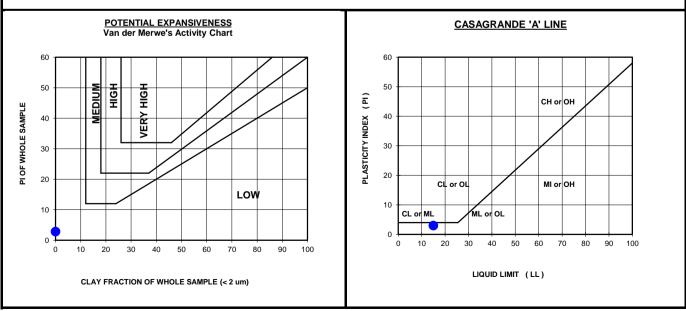


FOUNDATION INDICATOR TEST RESULTS

TEST LOCATION	LC03	PROJECT	Algoa Water Supply System
SAMPLE NO.	S98988	PROJECT NUMBER	112546
DEPTH	0.3-1.15 m	SITE	Lower Coerney

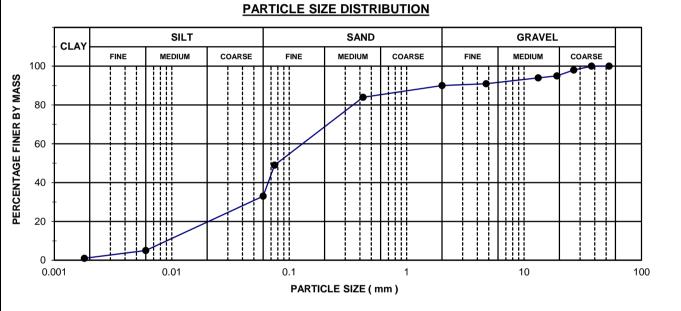
SIEVE ANALYSIS			ATTERBERG LIMITS		SOIL CLASSIFICATION			
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDERG LIMITS			SOIL CLASSIFICATION	
53.000	100	0.075	47	Liquid limit	(%)	15	% Gravel	2
37.500	100	0.060	36	Plastic limit	(%)	11	% Sand	62
26.500	100	0.006	5	Plasticity Index	(%)	4	% Silt	35
19.000	100	0.0018	1	Weighted PI	(%)	4	% Clay	1
13.200	100			Linear Shrinkage	(%)	2.0	Activity	4.0
4.750	99			Grading Modulus		0.61	Unified Classification	SC-SM
2.000	98			Uniformity coefficient		12	TRB Classification	A - 4
0.425	94			Coefficient of curvature		1.0		

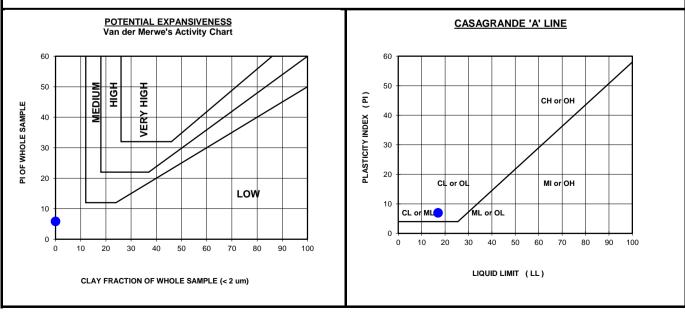




TEST LOCATION	LC03	PROJECT	Algoa Water Supply System
SAMPLE NO.	S98988	PROJECT NUMBER	112546
DEPTH	0.3-2.05 m	SITE	Lower Coerney

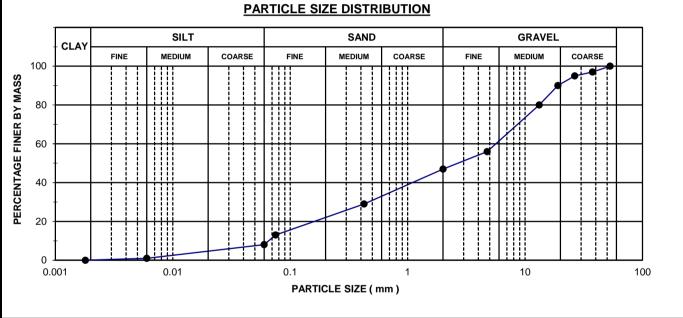
	SIEVE A	NALYSIS		ATTERBERG L	IMIT	2	SOIL CLASSIFICATION	
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDERG LIMITS			SOIL CLASSIFICATION	
53.000	100	0.075	50	Liquid limit	(%)	15	% Gravel	1
37.500	100	0.060	41	Plastic limit	(%)	12	% Sand	58
26.500	100	0.006	4	Plasticity Index	(%)	3	% Silt	41
19.000	100	0.0018	0	Weighted PI	(%)	3	% Clay	0
13.200	100			Linear Shrinkage	(%)	1.5	Activity	#DIV/0!
4.750	99			Grading Modulus		0.56	Unified Classification	SM
2.000	99			Uniformity coefficient		10	TRB Classification	A - 4
0.425	95			Coefficient of curvature		0.9		

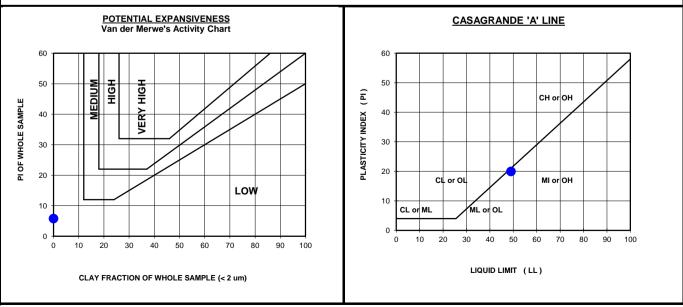




TEST LOCATION	LC04	PROJECT	Algoa Water Supply System
SAMPLE NO.	S98990	PROJECT NUMBER	112546
DEPTH	0.3-1.15 m	SITE	Lower Coerney

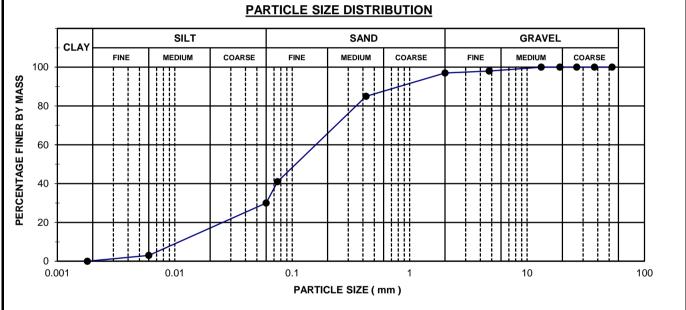
	SIEVE ANALYSIS			ATTERBERG LIMITS			SOIL CLASSIFICATION	
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDERG LIVITIS			SOIL CLASSIFICATION	
53.000	100	0.075	49	Liquid limit	(%)	17	% Gravel	10
37.500	100	0.060	33	Plastic limit	(%)	10	% Sand	57
26.500	98	0.006	5	Plasticity Index	(%)	7	% Silt	32
19.000	95	0.0018	1	Weighted PI	(%)	6	% Clay	1
13.200	94			Linear Shrinkage	(%)	3.5	Activity	7.0
4.750	91			Grading Modulus		0.77	Unified Classification	SC-SM
2.000	90			Uniformity coefficient		12	TRB Classification	A - 2 - 4
0.425	84			Coefficient of curvature		1.0		

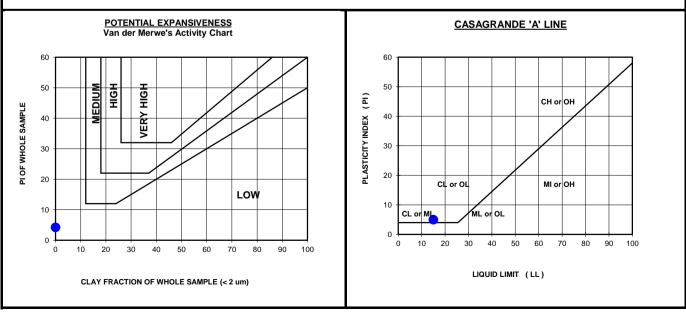




TEST LOCATION	LC05	PROJECT	Algoa Water Supply System	
SAMPLE NO.	S98992	PROJECT NUMBER	112546	
DEPTH	1.3-2.75 m	SITE	Lower Coerney	

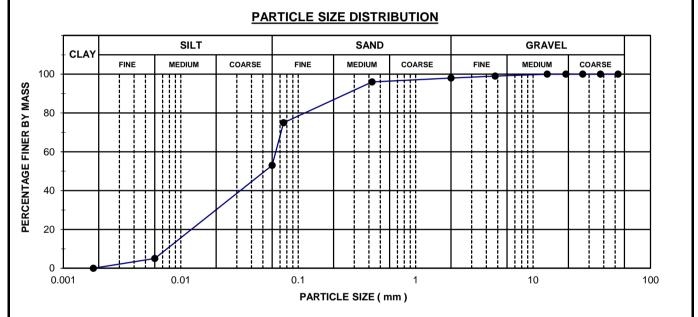
	SIEVE A	NALYSIS		ATTERBERG LIMITS			SOIL CLASSIFICATION	
Sieve (mm)	% Passing	Sieve (mm)	% Passing					
53.000	100	0.075	13	Liquid limit	(%)	49	% Gravel	53
37.500	97	0.060	8	Plastic limit	(%)	29	% Sand	39
26.500	95	0.006	1	Plasticity Index	(%)	20	% Silt	8
19.000	90	0.0018	0	Weighted PI	(%)	6	% Clay	0
13.200	80			Linear Shrinkage	(%)	10.0	Activity	#DIV/0!
4.750	56			Grading Modulus		2.11	Unified Classification	GM
2.000	47			Uniformity coefficient		93	TRB Classification	A - 2 - 7
0.425	29			Coefficient of curvature		0.6		

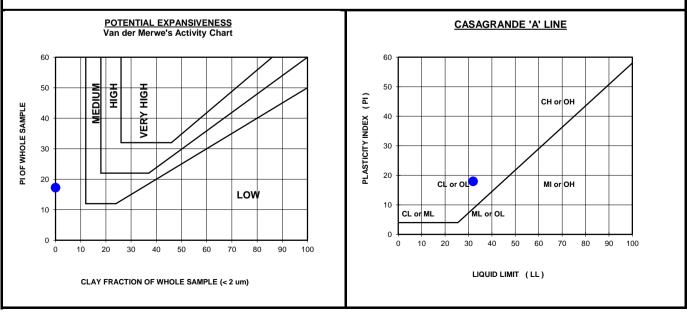




TEST LOCATION	LC05	PROJECT	Algoa Water Supply System
SAMPLE NO.	S98991	PROJECT NUMBER	112546
DEPTH	0.3-1.3 m	SITE	Lower Coerney

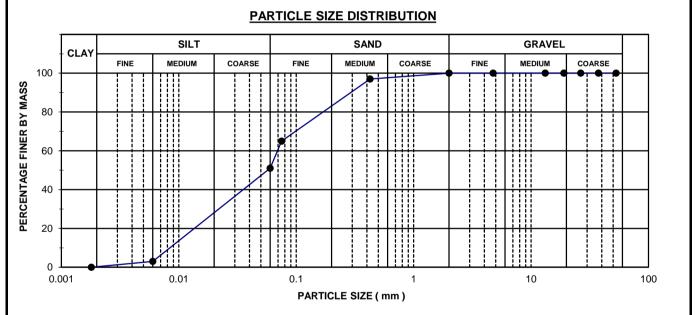
	SIEVE A	NALYSIS		ATTERBERG LIMITS			SOIL CLASSIFICATION	
Sieve (mm)	% Passing	Sieve (mm)	% Passing					
53.000	100	0.075	41	Liquid limit	(%)	15	% Gravel	3
37.500	100	0.060	30	Plastic limit	(%)	10	% Sand	67
26.500	100	0.006	3	Plasticity Index	(%)	5	% Silt	30
19.000	100	0.0018	0	Weighted PI	(%)	4	% Clay	0
13.200	100			Linear Shrinkage	(%)	2.5	Activity	#DIV/0!
4.750	98			Grading Modulus		0.77	Unified Classification	SC-SM
2.000	97			Uniformity coefficient		11	TRB Classification	A - 2 - 4
0.425	85			Coefficient of curvature		0.8		

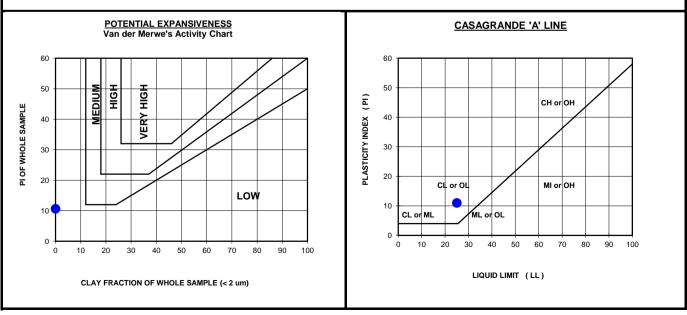




TEST LOCATION	LC06	PROJECT	Algoa Water Supply System	
SAMPLE NO.	S98993	PROJECT NUMBER	112546	
DEPTH	0.5-1.65 m	SITE	Lower Coerney	

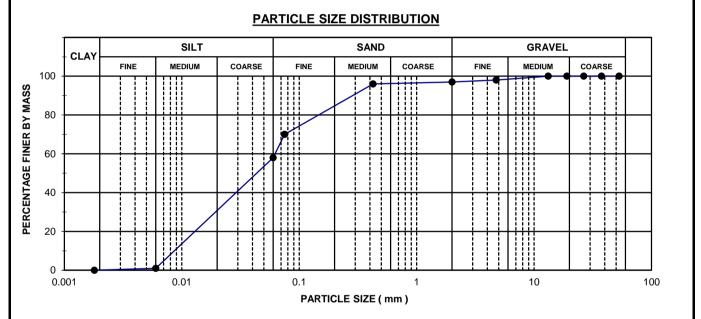
	SIEVE A	NALYSIS		ATTEDREDC I	ATTERBERG LIMITS		SOIL CLASSIFICATION	
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDERG LIVITIS			SOIL CLASSIFICATION	
53.000	100	0.075	75	Liquid limit	(%)	32	% Gravel	2
37.500	100	0.060	53	Plastic limit	(%)	14	% Sand	45
26.500	100	0.006	5	Plasticity Index	(%)	18	% Silt	53
19.000	100	0.0018	0	Weighted PI	(%)	17	% Clay	0
13.200	100			Linear Shrinkage	(%)	9.0	Activity	#DIV/0!
4.750	99			Grading Modulus		0.31	Unified Classification	CL
2.000	98			Uniformity coefficient		6	TRB Classification	A - 6
0.425	96			Coefficient of curvature		1.5		

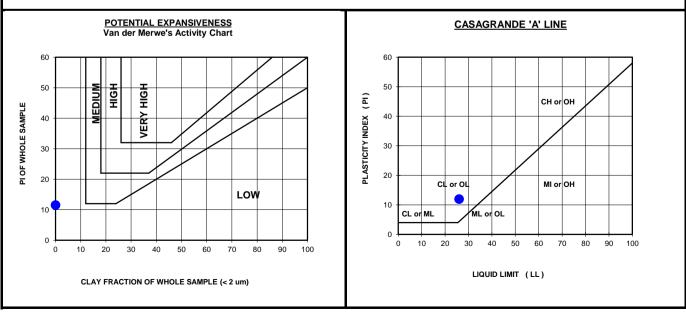




TEST LOCATION	LC07	PROJECT	Algoa Water Supply System	
SAMPLE NO.	S98994	PROJECT NUMBER	112546	
DEPTH	0.9-2.0 m	SITE	Lower Coerney	

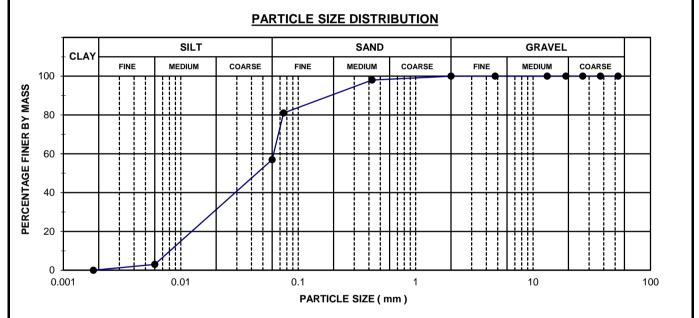
	SIEVE ANALYSIS			ATTERBERG LIMITS			SOIL CLASSIFICATION	
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDERG LIVITIS			SOIL CLASSIFICATION	
53.000	100	0.075	65	Liquid limit	(%)	25	% Gravel	0
37.500	100	0.060	51	Plastic limit	(%)	14	% Sand	49
26.500	100	0.006	3	Plasticity Index	(%)	11	% Silt	51
19.000	100	0.0018	0	Weighted PI	(%)	11	% Clay	0
13.200	100			Linear Shrinkage	(%)	5.5	Activity	#DIV/0!
4.750	100			Grading Modulus		0.38	Unified Classification	CL
2.000	100			Uniformity coefficient		5	TRB Classification	A - 6
0.425	97			Coefficient of curvature		1.4		

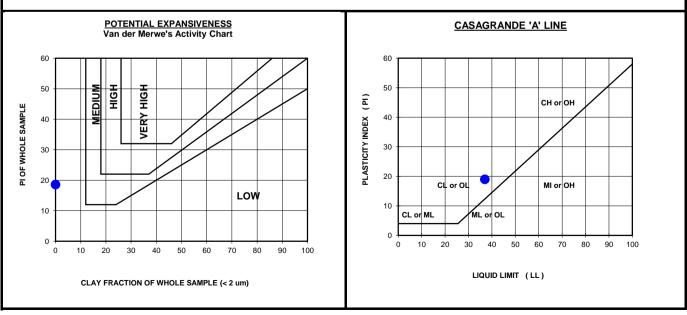




TEST LOCATION	LC08	PROJECT	Algoa Water Supply System	
SAMPLE NO.	S98995	PROJECT NUMBER	112546	
DEPTH	0.5-1.5 m	SITE	Lower Coerney	

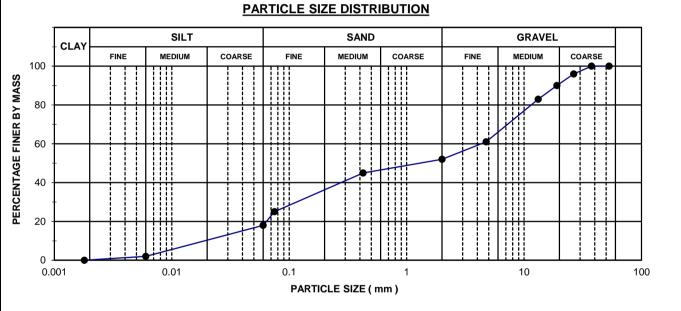
	SIEVE A	NALYSIS		ATTERBERG LIMITS		SOIL CLASSIFICATION		
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDERG LIVITIS			SOIL CLASSIFICA	IION
53.000	100	0.075	70	Liquid limit	(%)	26	% Gravel	3
37.500	100	0.060	58	Plastic limit	(%)	14	% Sand	39
26.500	100	0.006	1	Plasticity Index	(%)	12	% Silt	58
19.000	100	0.0018	0	Weighted PI	(%)	12	% Clay	0
13.200	100			Linear Shrinkage	(%)	6.0	Activity	#DIV/0!
4.750	98			Grading Modulus		0.76	Unified Classification	CL
2.000	97			Uniformity coefficient		4	TRB Classification	A - 6
0.425	96			Coefficient of curvature		1.2		

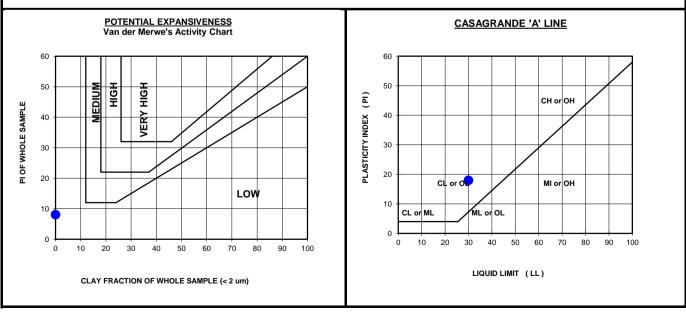




TEST LOCATION	LC09	PROJECT	Algoa Water Supply System	
SAMPLE NO.	S98996	PROJECT NUMBER	112546	
DEPTH	0.4-0.85 m	SITE	Lower Coerney	

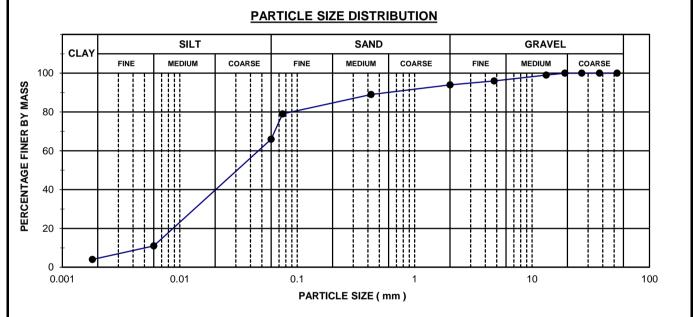
	SIEVE ANALYSIS			ATTERBERG LIMITS		SOIL CLASSIFICATION		
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDERG LIMITS			Soil CLASSIFICATION	
53.000	100	0.075	81	Liquid limit	(%)	37	% Gravel	0
37.500	100	0.060	57	Plastic limit	(%)	18	% Sand	43
26.500	100	0.006	3	Plasticity Index	(%)	19	% Silt	57
19.000	100	0.0018	0	Weighted PI	(%)	19	% Clay	0
13.200	100			Linear Shrinkage	(%)	9.5	Activity	#DIV/0!
4.750	100			Grading Modulus		0.21	Unified Classification	CL
2.000	100			Uniformity coefficient		5	TRB Classification	A - 6
0.425	98			Coefficient of curvature		1.4		

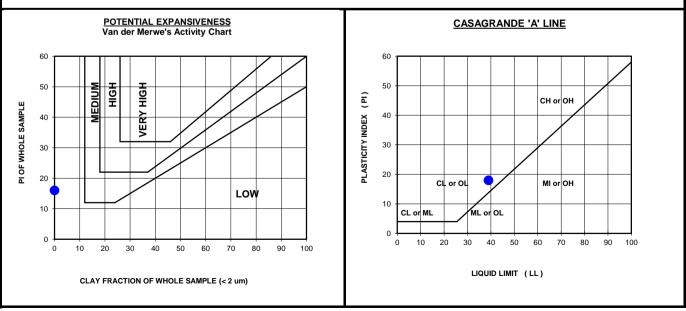




TEST LOCATION	LC09	PROJECT	Algoa Water Supply System	
SAMPLE NO.	S98997	PROJECT NUMBER	112546	
DEPTH	0.85-1.2 m	SITE	Lower Coerney	

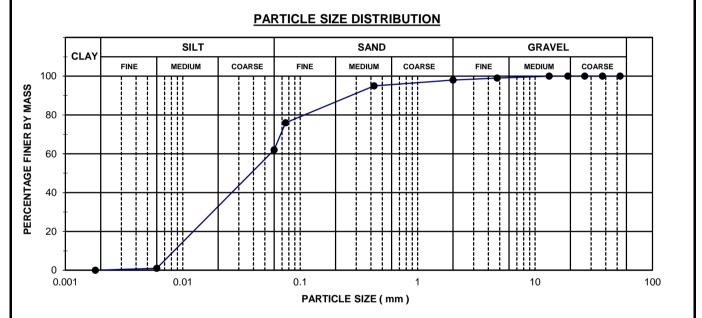
	SIEVE A	NALYSIS		ATTERBERG LIMITS			SOIL CLASSIFICATION	
Sieve (mm)	% Passing	Sieve (mm)	% Passing					
53.000	100	0.075	25	Liquid limit	(%)	30	% Gravel	48
37.500	100	0.060	18	Plastic limit	(%)	12	% Sand	34
26.500	96	0.006	2	Plasticity Index	(%)	18	% Silt	18
19.000	90	0.0018	0	Weighted PI	(%)	8	% Clay	0
13.200	83			Linear Shrinkage	(%)	9.0	Activity	#DIV/0!
4.750	61			Grading Modulus		1.78	Unified Classification	SC
2.000	52			Uniformity coefficient		135	TRB Classification	A - 2 - 6
0.425	45			Coefficient of curvature		0.2		

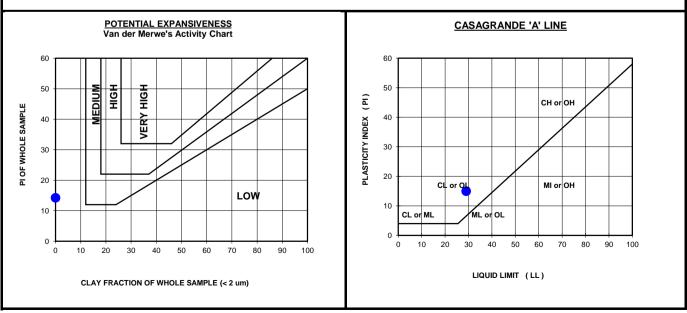




TEST LOCATION	LC09	PROJECT	Algoa Water Supply System	
SAMPLE NO.	S98998	PROJECT NUMBER	112546	
DEPTH	1.2-2.4 m	SITE	Lower Coerney	

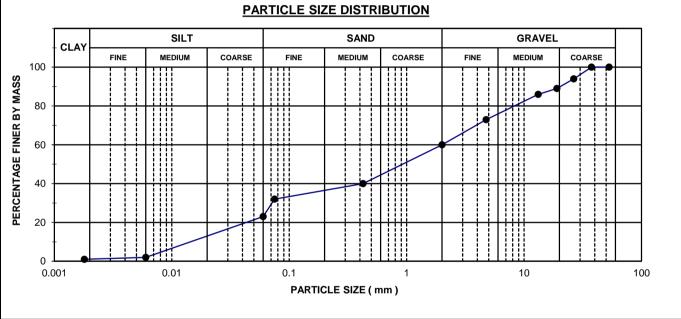
	SIEVE ANALYSIS			ATTERBERG LIMITS			SOIL CLASSIFICATION	
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDERG LIWITS			SOIL CLASSIFICATION	
53.000	100	0.075	79	Liquid limit	(%)	39	% Gravel	6
37.500	100	0.060	66	Plastic limit	(%)	21	% Sand	28
26.500	100	0.006	11	Plasticity Index	(%)	18	% Silt	62
19.000	100	0.0018	4	Weighted PI	(%)	16	% Clay	4
13.200	99			Linear Shrinkage	(%)	9.0	Activity	4.5
4.750	96			Grading Modulus		0.38	Unified Classification	CL
2.000	94			Uniformity coefficient		10	TRB Classification	A - 6
0.425	89			Coefficient of curvature		2.1		

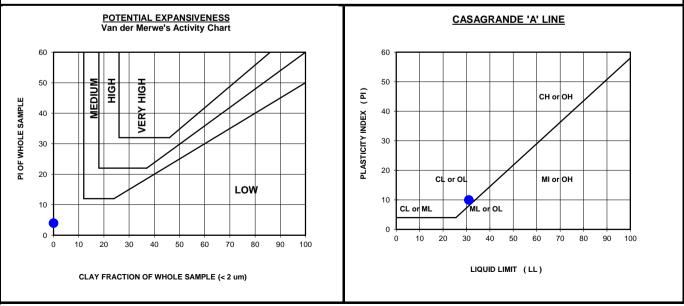




TEST LOCATION	LC10	PROJECT	Algoa Water Supply System	
SAMPLE NO.	S98999	PROJECT NUMBER	112546	
DEPTH	1.0-1.6 m	SITE	Lower Coerney	

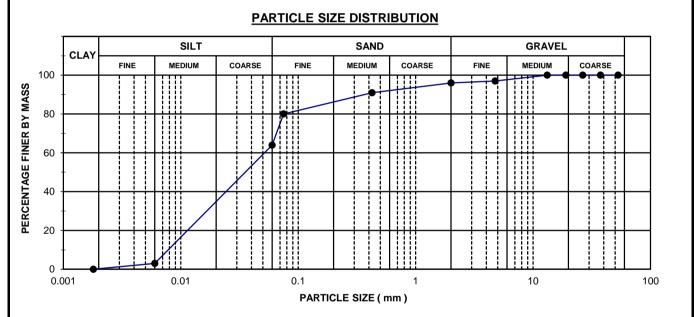
	SIEVE A	NALYSIS		ATTERBERG LIMITS		SOIL CLASSIFICATION		
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDERG LIVITIS			SOIL CLASSIFICA	
53.000	100	0.075	76	Liquid limit	(%)	29	% Gravel	2
37.500	100	0.060	62	Plastic limit	(%)	14	% Sand	36
26.500	100	0.006	1	Plasticity Index	(%)	15	% Silt	62
19.000	100	0.0018	0	Weighted PI	(%)	14	% Clay	0
13.200	100			Linear Shrinkage	(%)	7.5	Activity	#DIV/0!
4.750	99			Grading Modulus		0.31	Unified Classification	CL
2.000	98			Uniformity coefficient		4	TRB Classification	A - 6
0.425	95			Coefficient of curvature		1.2		

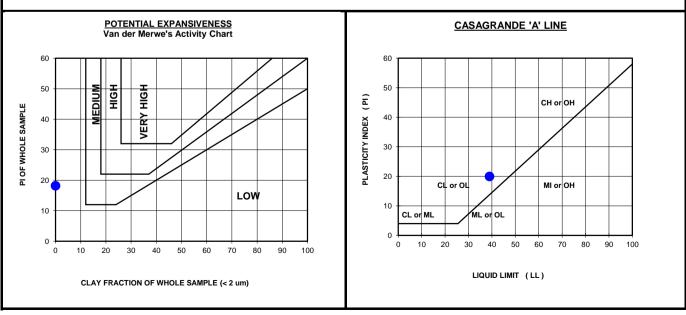




TEST LOCATION	LC11	PROJECT	Algoa Water Supply System	
SAMPLE NO.	S99000	PROJECT NUMBER	112546	
DEPTH	0.5-1.5 m	SITE	Lower Coerney	

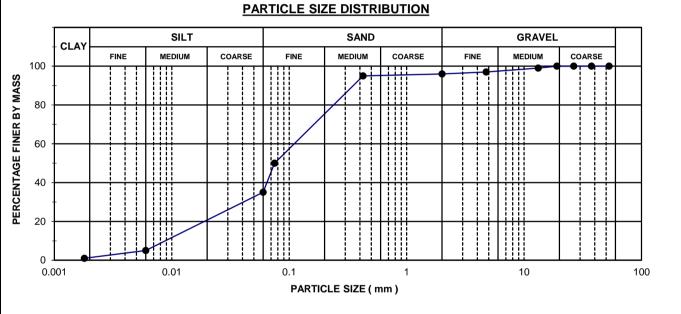
	SIEVE ANALYSIS			ATTERBERG LIMITS			SOIL CLASSIFICATION	
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDERG LIVITIS			Soil CLASSIFICATION	
53.000	100	0.075	32	Liquid limit	(%)	31	% Gravel	40
37.500	100	0.060	23	Plastic limit	(%)	21	% Sand	37
26.500	94	0.006	2	Plasticity Index	(%)	10	% Silt	22
19.000	89	0.0018	1	Weighted PI	(%)	4	% Clay	1
13.200	86			Linear Shrinkage	(%)	5.0	Activity	10.0
4.750	73			Grading Modulus		1.68	Unified Classification	SC
2.000	60			Uniformity coefficient		75	TRB Classification	A - 2 - 4
0.425	40			Coefficient of curvature		0.1		

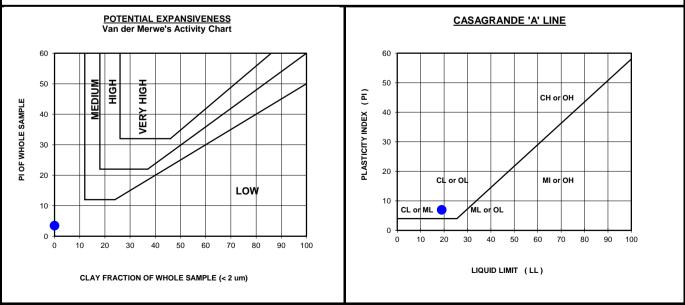




TEST LOCATION	LC20	PROJECT	Algoa Water Supply System
SAMPLE NO.	S99001	PROJECT NUMBER	112546
DEPTH	0.9-1.95 m	SITE	Lower Coerney

	SIEVE A	NALYSIS		ATTEDREDC I	ATTERBERG LIMITS		SOIL CLASSIFICATION	
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDENG I	211V11 1)	5	SOIL CLASSIFICA	
53.000	100	0.075	80	Liquid limit	(%)	39	% Gravel	4
37.500	100	0.060	64	Plastic limit	(%)	19	% Sand	32
26.500	100	0.006	3	Plasticity Index	(%)	20	% Silt	64
19.000	100	0.0018	0	Weighted PI	(%)	18	% Clay	0
13.200	100			Linear Shrinkage	(%)	10.0	Activity	#DIV/0!
4.750	97			Grading Modulus		0.33	Unified Classification	CL
2.000	96			Uniformity coefficient		5	TRB Classification	A - 6
0.425	91			Coefficient of curvature		1.3		





TEST LOCATION	LC23	PROJECT	Algoa Water Supply System
SAMPLE NO.	S99002	PROJECT NUMBER	112546
DEPTH	0.5-2.0 m	SITE	Lower Coerney

SIEVE ANALYSIS		ATTERBERG LIMITS			SOIL CLASSIFICATION			
Sieve (mm)	% Passing	Sieve (mm)	% Passing	ATTERDERG LIVITTS			SOIL CLASSIFIC.	ATION
53.000	100	0.075	50	Liquid limit	(%)	19	% Gravel	4
37.500	100	0.060	35	Plastic limit	(%)	12	% Sand	61
26.500	100	0.006	5	Plasticity Index	(%)	7	% Silt	34
19.000	100	0.0018	1	Weighted PI	(%)	4	% Clay	1
13.200	99			Linear Shrinkage	(%)	3.5	Activity	7.0
4.750	97			Grading Modulus		0.59	Unified Classification	SC-SM
2.000	96			Uniformity coefficient		10	TRB Classification	A - 2 - 4
0.425	95			Coefficient of curvature		1.1		

Appendix F: Packer (Lugeon) test data

RWBE GEOTECHNICAL DRILLING

P.O.Box 395 Graaff Reinet 6280

Fax No: 086 645 9149 Cell No: 082 851 5989 Email: rwbe@absamail.co.za

REPORT ON WATER PRESURE TESTING

SCHEME:	Lower Coerney Dam		BOREHOLE NO:			
DRILLER:	Mothau					
-			1			
DATE	DEPTH STAGES	PRESSURE	TESTING TIMES	WATER GA	AUGE READ	DING
	Meters	Кра	Minutes	From	То	Total Liters
Pump	Bean	•				
Calibration:						
20.000	From 7 50 to 10.07 m	CE.	10	400	404	92
28-Sep	From 7.50 to 10.97 m	65 120	10 10			<u> </u>
		170	10			248
		120	10			248
	Water Level 6.70 m	65	10			144
	From 11.00 to 13.97 m	100	10			11.8
		170	10			31
		250	10		459	62
		170	10			52
	Water Level 8.10 m	100	10	515	551	36
29-Sep	From 14.00 to 16.97 m	125	10	555.3	555.3	0
		220	10	556		0
		320	10			0
		220	10			0
	Water Level 9.70 m	125	10			0
29-Sep	From 17.00 to 20.45 m	155	10			355
		270	10			425
	Max Kpa 340	385	10			465
	Water Level 13.00 m	270 155	10 10			410
	Water Lever 13.00 m	100	10	290	590	300
Notes						
INUICS						

RWBE GEOTECHNICAL DRILLING

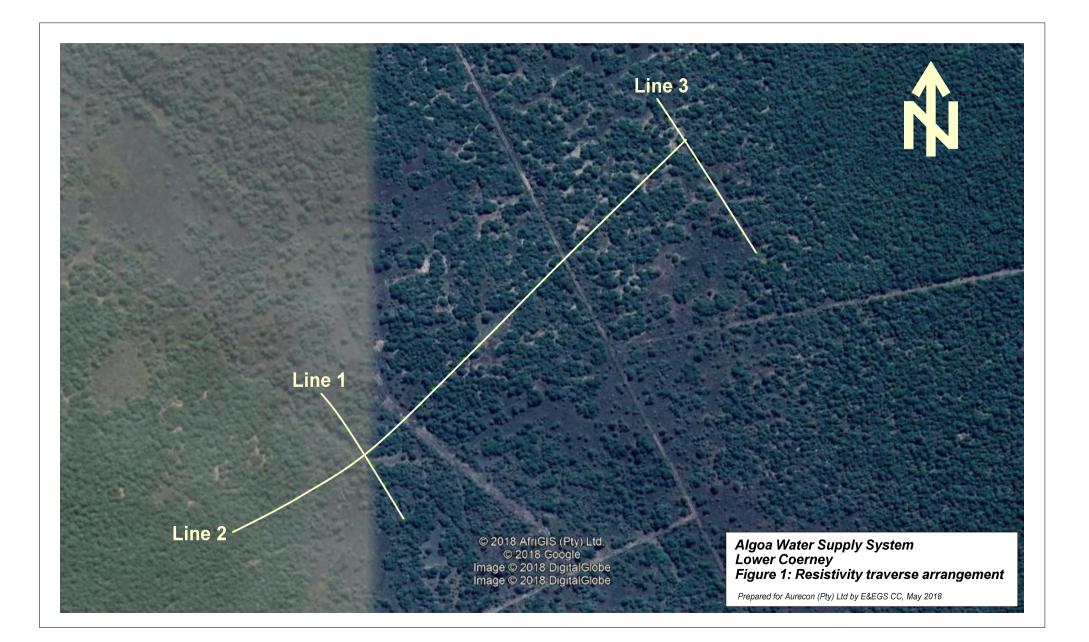
P.O.Box 395 Graaff Reinet 6280

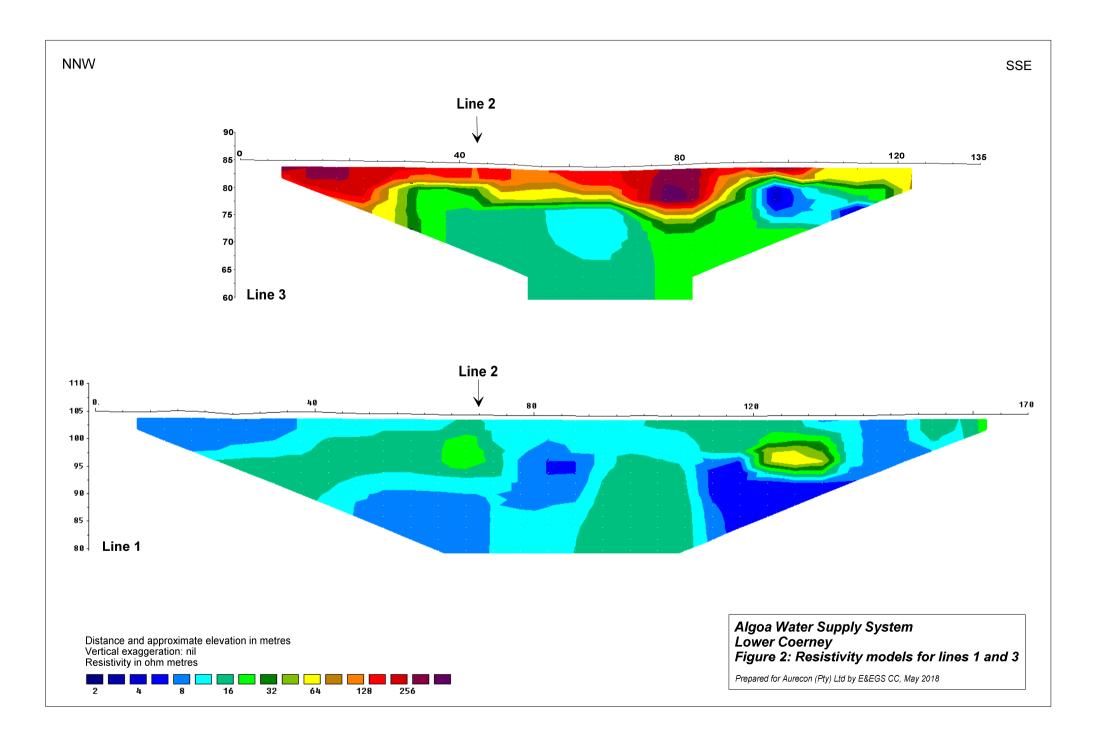
Fax No: 086 645 9149 Cell No: 082 851 5989 Email: rwbe@absamail.co.za

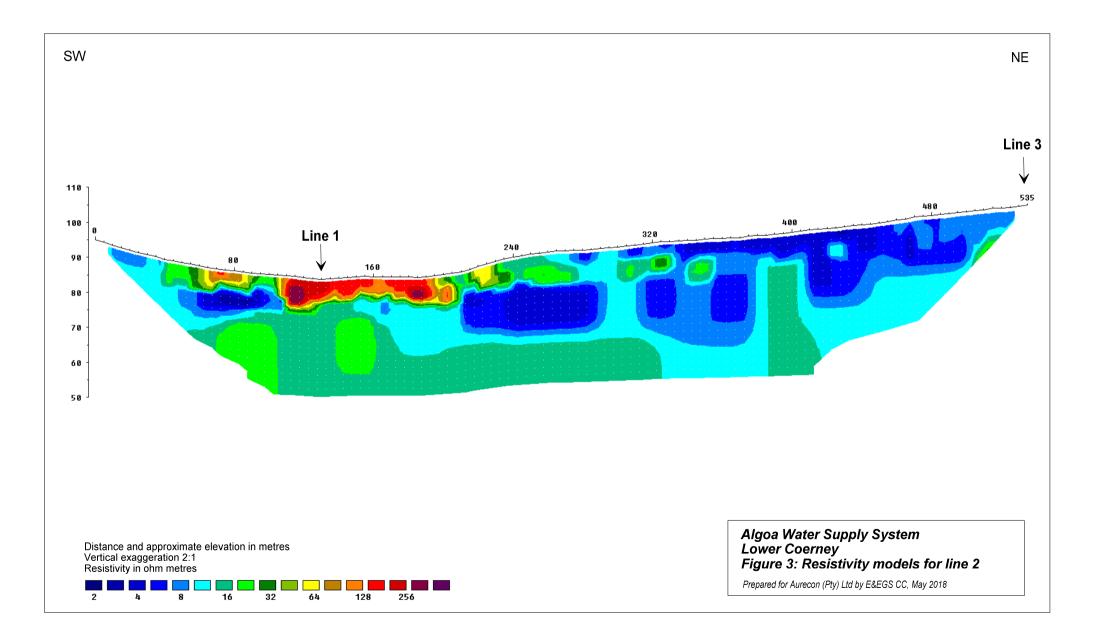
REPORT ON WATER PRESURE TESTING

	Mothau		NO:			
DATE	DEPTH STAGES	PRESSURE	TESTING TIMES	WATER GA	UGE READ	DING
	Meters	Кра	Minutes	From	То	Total Liters
Pump	Bean					
•		10	2	169	197	28
Calibration:		15	2	208	240	32
		20	2	249	292	43
26-Sep	From 4.50 to 7.65 m	40	10	568.1	568.1	0
		70	10		580	0
		100	10		596.2	0
		70	10		599.5	0
	Water Level 4.30 m	40	10		603.4	0
	From 7.50 to 10.58 m	65	10		790.7	6.6
		120	10		826.4	34.4
		170	10		880.8	50.8
		120	10		925.2	42.2
	Water Level 5.90 m	65	10		958	30.2
	From 10.50 to 12.59 m	95	10		960	0
		165	10	961	962.6	1.6
		235	10	964	972.8	8.8
		165	10	973	977.8	4.8
	Water Level 4.00 m	95	10	978	979	1
27-Sep	From 12.50 to 13.36 m	115	10	13.5	13.5	0
		200	10	16.4	16.4	0
		280	10	21.2	21.2	0
		200	10	25.7	25.7	0
	Water Level 4.50 m	115	10	28.7	28.7	0
27-Sep	From 15.50 to 18.59 m	140	10		90.6	0
		245	10		92.8	0
		350	10		98	1.6
		245	10		99.9	0
	Water Level 4.70 m	140	10		101.5	
28-Sep	From 18.50 to 20.43 m	165	10		123	0
		395	10		125.1	0
		420	10		135.9	
		295	10		139.2	
	Water Level 6.00 m	165	10	141.4	141.4	0

RWBE GEOTECHNICAL DRILLING


P.O.Box 395 Graaff Reinet 6280


Fax No: 086 645 9149 Cell No: 082 851 5989 Email: rwbe@absamail.co.za


REPORT ON WATER PRESURE TESTING

SCHEME:	Lower Coerney Dam		BOREHOLE NO:	LC 4		
DRILLER:	Rasta					
DATE	DEPTH STAGES	PRESSURE	TESTING TIMES	WATER GA	AUGE READ	DING
	Meters	Кра	Minutes	From	То	Total Liters
Pump	Bean					
Calibration:						
25-Sep	From 4.00 to 7.78 m	35	10	516.2	516.2	0
20 000		65	10			0
		90	10			0
		65	10			0
	Water Level 6.60 m	35	10			0
	From 7.50 to 10.94 m	65	10			0
·		120	10			2.6
		170	10	555		70.4
		120	10	630	670	40
	Water Level 3.50 m	65	10	672	700.2	28.2
25-Sep	From 11.00 to 13.94 m	100	10	705	705	0
		170	10	710	710	0
		250	10	713	713	0
		170	10			0
	Water Level 4.00 m	100	10	714	714	0
26-Sep	From 13.50 to 15.04 m	120	10			0
		215	10			0
		305	10			0
		215	10			0
	Water Level 10.00 m	120	10	724.8	724.8	0
Notes						
INULES						

Appendix G: Geophysical survey results

ENGINEERING & EXPLORATION GEOPHYSICAL SERVICES CC

CK94/10526/23 Geophysical Contractors

170, Jakaranda Street, Doringkloof, Gauteng, 0157 012 - 6673369 (tel) 6675186(fax) 10th May, 2018

Aurecon South Africa (Pty) Ltd, P O Box 905, Pretoria, 0001.

Attn: Gary Davis

Dear Sir,

RESISTIVITY SURVEY ON LOWER COERNEY, KIRKWOOD

A resistivity survey has been carried out on Lower Coerney, near Kirkwood, at the planned site of a dam. The investigation for the dam is in support of the Algoa Water Supply Project.

The area is underlain by sedimentary rock of Cretaceous age. Two boreholes were drilled about 600 metres to the south of the site by Water Affairs in 1986 and 1987; they intersected siltstone along with mudstone and sandstone beneath a layer of hillwash and completely weathered siltstone that is two and a half metres thick.

The survey consists of three traverses, one along the centre line of the dam, one on the northeastern side of the site and one in the valley itself. The required traverse positions were indicated on a kmz file supplied by Aurecon and followed cut lines prepared by a third party.

Fieldwork was undertaken from the 7th to 9th May. An ABEM LS2 was employed for the task using a Wenner-Schlumberger protocol and a five-metre electrode separation. The positions of the traverses were recorded with a Garmin GPS (appendix). Changes in elevation along the traverses were recorded with a dumpy level; these were assigned a realistic base level using elevations taken from Goggle Earth.

The data were modelled using Res2Dinv, a program that fits internally-generated model data to the field data over several iterations. The results of the operation are cross-sections showing lateral and vertical changes in resistivity.

The traverse arrangement is shown on figure 1 and the resistivity models in figures 2 and 3. Warm colours (yellow-red) in the models reflect resistors and cooler colours (green-blue), relative conductors.

The resistivity of a rock unit is controlled mostly by the content and quality of the water it holds and its clay content, hence a resistivity interpretation is based on inferences drawn from contrasts in these quantities. This site is characterised by conductors but there is a resistive layer about five metres thick within the valley (figures 2 and 3). Exposed at surface in the valley floor, this layer albeit with a reduction in resistivity can be traced for a little distance beneath the north-east bank. Its surface expression is taken to reflect hardpan and its extension also a layer of increased cementation. Apart from this layer, resistivity increases generally with depth, although often in an irregular fashion and with breaks in continuity, to give an impression of horizontal layering, especially on the model for line 2 (figure 3). The

most conductive zone is up to twenty metres thick. This vertical change is expected to reflect a variation in the weathering with the most conductive area corresponding to weathered rock. The lateral changes that interrupt it may arise from a local variation in lithology, however, it is possible that they may indicate faults. If the latter, the most likely position for a fault zone is beneath the valley floor and between 320 and 400 metres on line 2.

In summary, the area has a hardpan layer exposed in the valley floor that may extend beneath below the valley side and a horizon of weathered rock up to twenty metres thick. There are no clearly defined anomalies indicative of a fault, but their absence cannot be entirely discounted.

Yours sincerely,

R W Day Pr.Sci.Nat.

The interpretation contained in this report is based on the training and experience of the author and information passed on during the course of the investigation. As with all geophysical data, other interpretations are possible.

Appendix

Resistivity traverse coordinates (Lo25 WGS84) Lower Coerney

Line	Station	LoY	LoX
1	0	58102	-3702609
1	20	58113	-3702626
1	40	58125	-3702642
1	60	58136	-3702657
1	80	58149	-3702674
1	100	58159	-3702691
1	120	58168	-3702708
1	135	58176	-3702722
2	0	58025	-3702729
2	20	58045	-3702719
2	40	58061	-3702710
2	60	58080	-3702701
2	80	58098	-3702692
2	100	58115	-3702681
2	120	58132	-3702671
2	140	58148	-3702658
2	160	58163	-3702646
2	180	58178	-3702631
2	200	58193	-3702618
2	220	58203	-3702604
2	240	58218	-3702592
2	260	58232	-3702577
2	280	58246	-3702564
2	300	58261	-3702550
2	320	58277	-3702535
2	340	58290	-3702523
2 2	360 380	58304 58317	-3702508 -3702494
2	400	58333	-3702494 -3702481
2	400 420	58346	-3702481 -3702467
2	440	58360	-3702407
2	440 460	58374	-3702433
2	480	58389	-3702439
2	500	58402	-3702420
2	520	58418	-3702395
2	535	58429	-3702387
3	0	58406	-3702351
3	20	58416	-3702368
3	40	58425	-3702385
3	60	58437	-3702403
3	80	58447	-3702420
3	100	58458	-3702434
3	120	58470	-3702453
3	140	58480	-3702469
3	160	58493	-3702486
3	170	58500	-3702494

Appendix H: Groundwater evaluation

Reg. No.: CK 2004-059516-23

38 Disa Avenue Kommetjie 7975

Erik van der Berg Erik.VanDerBerg@aurecongroup.com

19 November 2018

Groundwater concerns in the Lower Coerney Dam site area

This brief assessment of the groundwater situation in the Lower Coerney Dam site area follows from concerns about the shallow alluvial gravels that were encountered during core drilling at the proposed dam site. The issues raised are:

- Groundwater flow direction
- Groundwater flow rate

1

• Potential groundwater effect on the planned dam.

The discussion below attempts to present what can be deduced from the data supplied. This consists of the locations of the core boreholes (Figure 1), the geological logs of the core holes and groundwater levels (Table 1).

Figure 1. Borehole locations

Natural groundwater levels, flow direction & flow rate

:

2

Natural groundwater levels appear to mirror topography to produce a groundwater flow direction downstream in a roughly southerly direction (Figure 2). The hydraulic gradient is steep, around 0.03 - 0.05 (Table 1) which shows that the permeability of the saturated rocks are very low, as one would expect from the Kirkwood Formation mudstones, siltstones and sandstones. Even with the steep hydraulic gradients, the flow rates will be very low.

				••	, ,		
BH no	Collar elevation (mamsl)	RWL (mbgl)	RWL (mamsl)		Approximate Distance (m)	Difference in RWL (m)	Hydraulic gradient
LC1	83.36	13.75	69.61				
LC2	89.15	19.6	69.55				
LC3	84.30	18.1	66.20	LC2 - LC3	100	3.35	0.034
LC4	81.82	12.7	69.12				
LC5	102.01	9.2	92.81				
LC6	89.98	8.8	81.18	LC5 - LC6	220	11.63	0.053

Table 1. Rest water levels and approximate hydraulic gradients

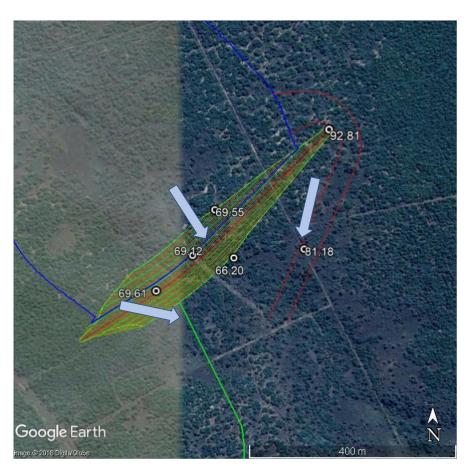


Figure 2. Rough groundwater flow direction

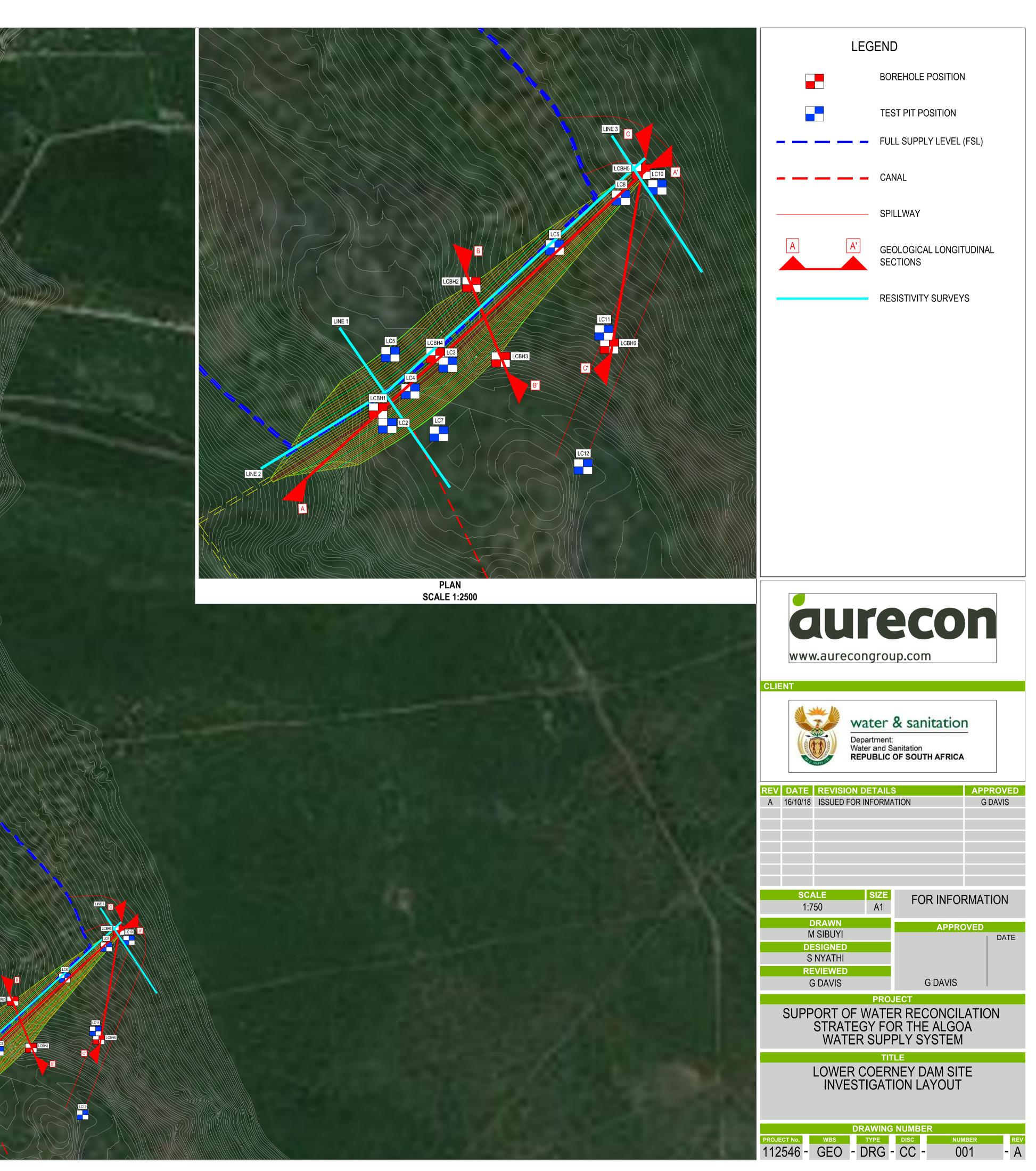
Perched groundwater flow rate after dam construction

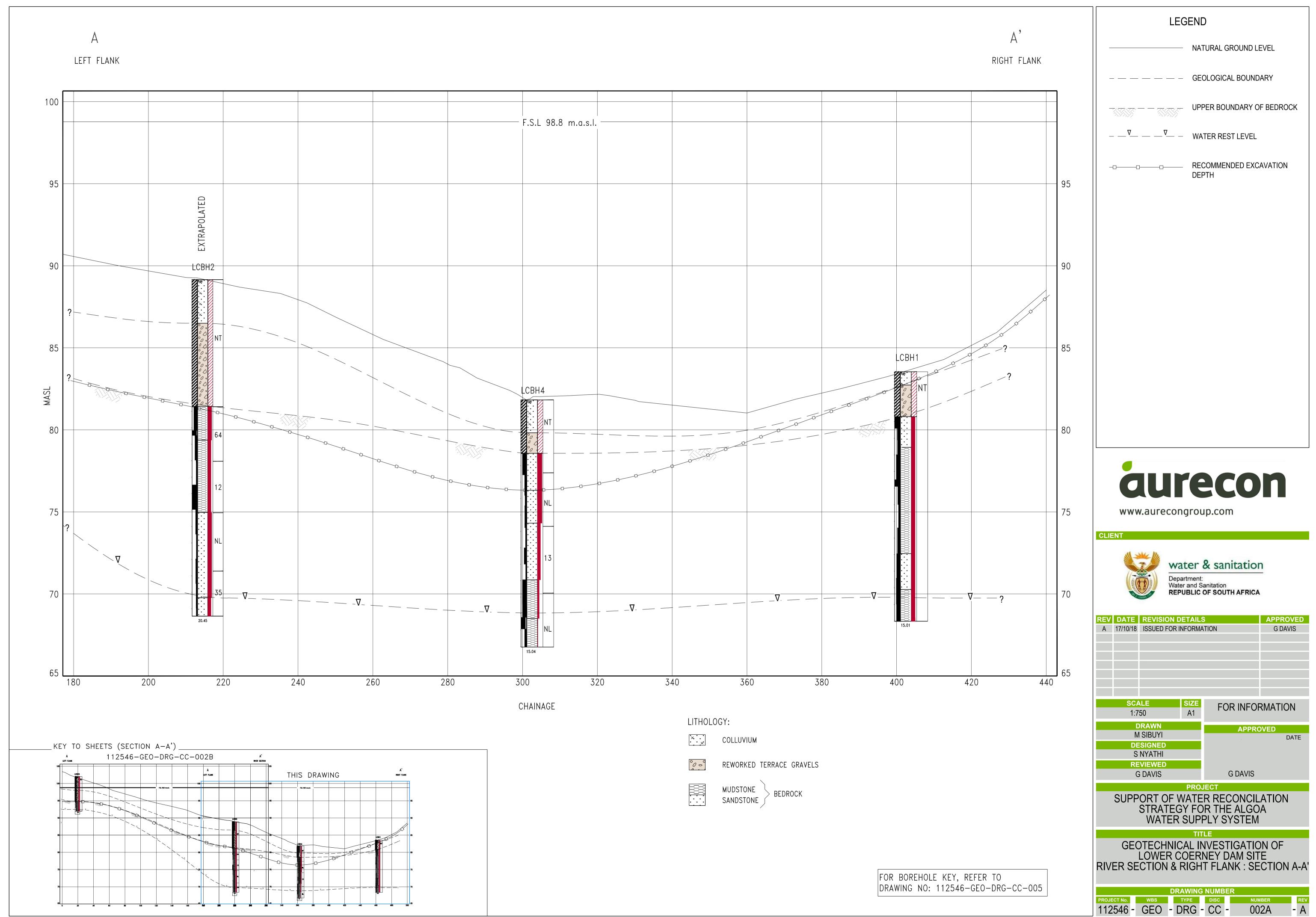
The groundwater table lies below the alluvial gravels. However, after constructing the dam, water can be expected to leak through the upper, near-surface layers and saturate the gravel layer. The leakage may be slow due to the presence of clayey material in places, and with time it may reduce as additional clayey and silty material accumulates on the bottom of the dam. The hydraulic gradient, however, will be high and if the gravels are highly permeable, water will be able to flow relatively rapidly in this layer. The flow rate through the gravels, however, may not be a function of the permeability of the gravels but rather the leakage rate through the base of the dam, as this latter flow rate may be less than that of the gravels themselves. This is obviously unknown.

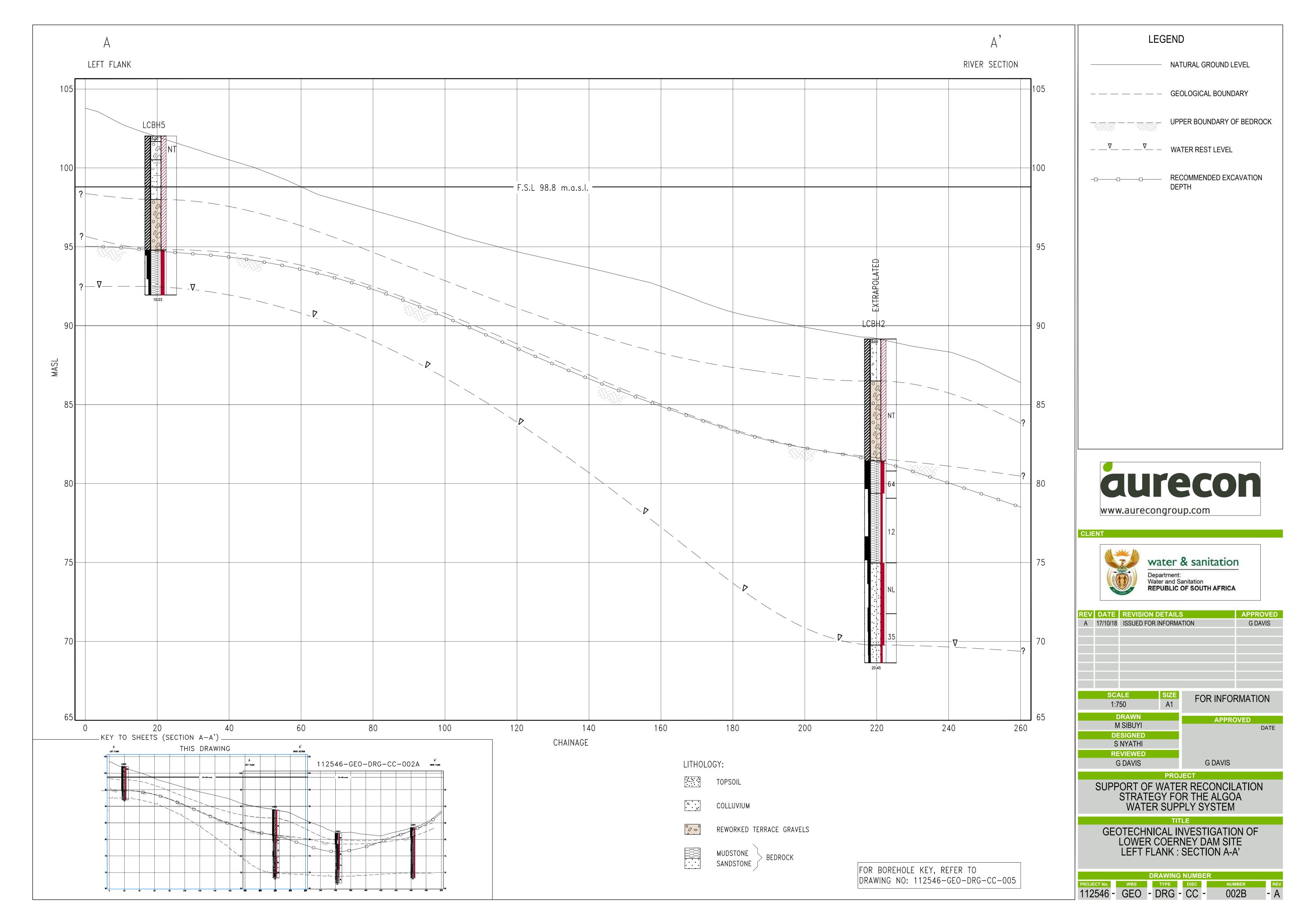
The maximum flow rate, ie the potential flow through the gravels can be estimated once the hydraulic conductivity or transmissivity of the gravels are known. This can be obtained by conducting injection tests on the core boreholes if they are still sufficiently open (they were not back-filled but may be blocked with debris); or alternatively new boreholes can be drilled for testing purposes. The results of the permeability tests done on the bedrock are obviously not suitable to be used to estimate the gavels' permeability.

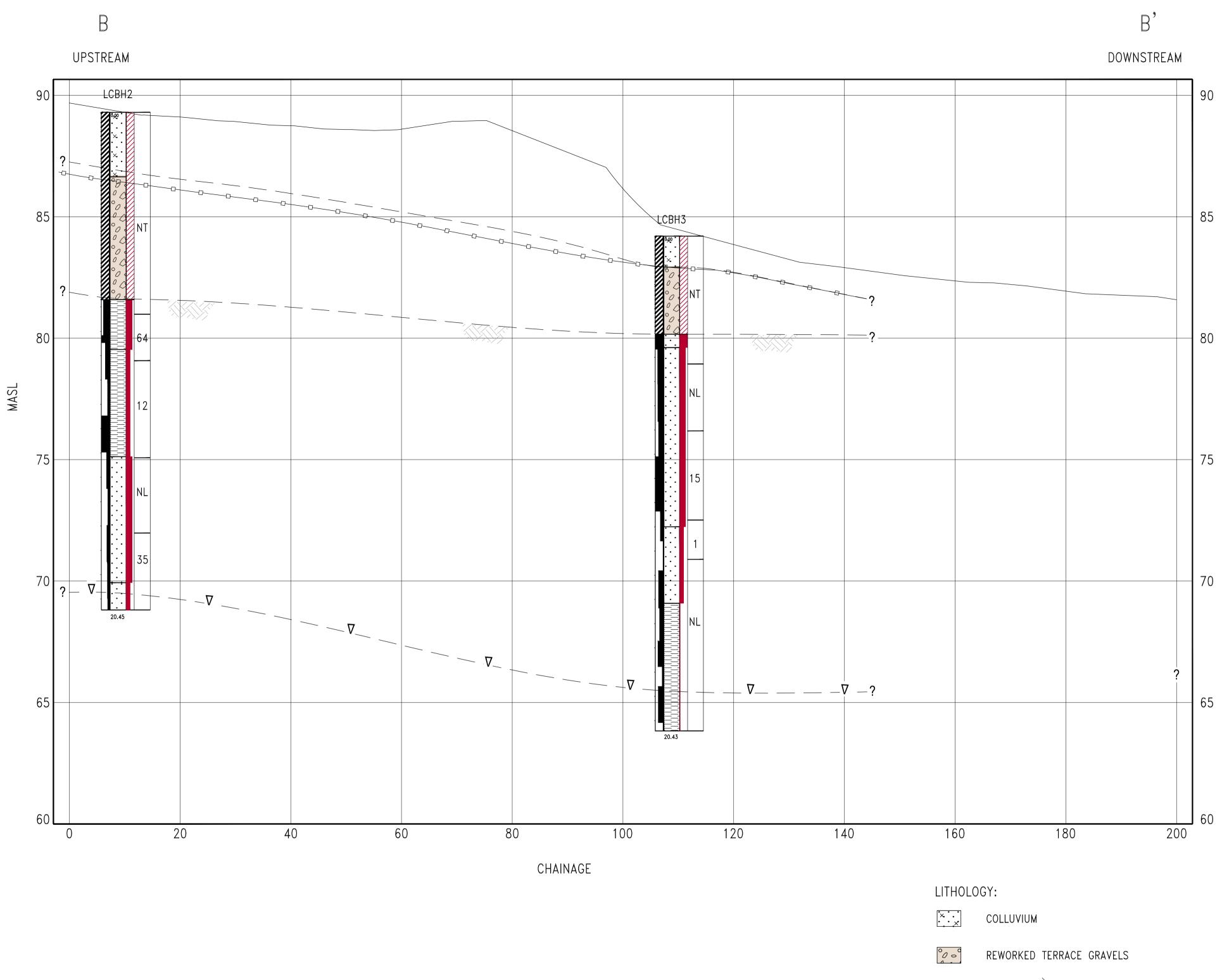
It is likely that leakage via the base of the dam and through the gravels will not daylight as new springs downstream of the dam wall as it appears as if the vegetation is sufficiently dense to opportunistically utilize this shallow water – water that would naturally be in this zone during heavy rainfall periods. A botanist should be consulted to comment on this.

Potential effect on natural groundwater flow

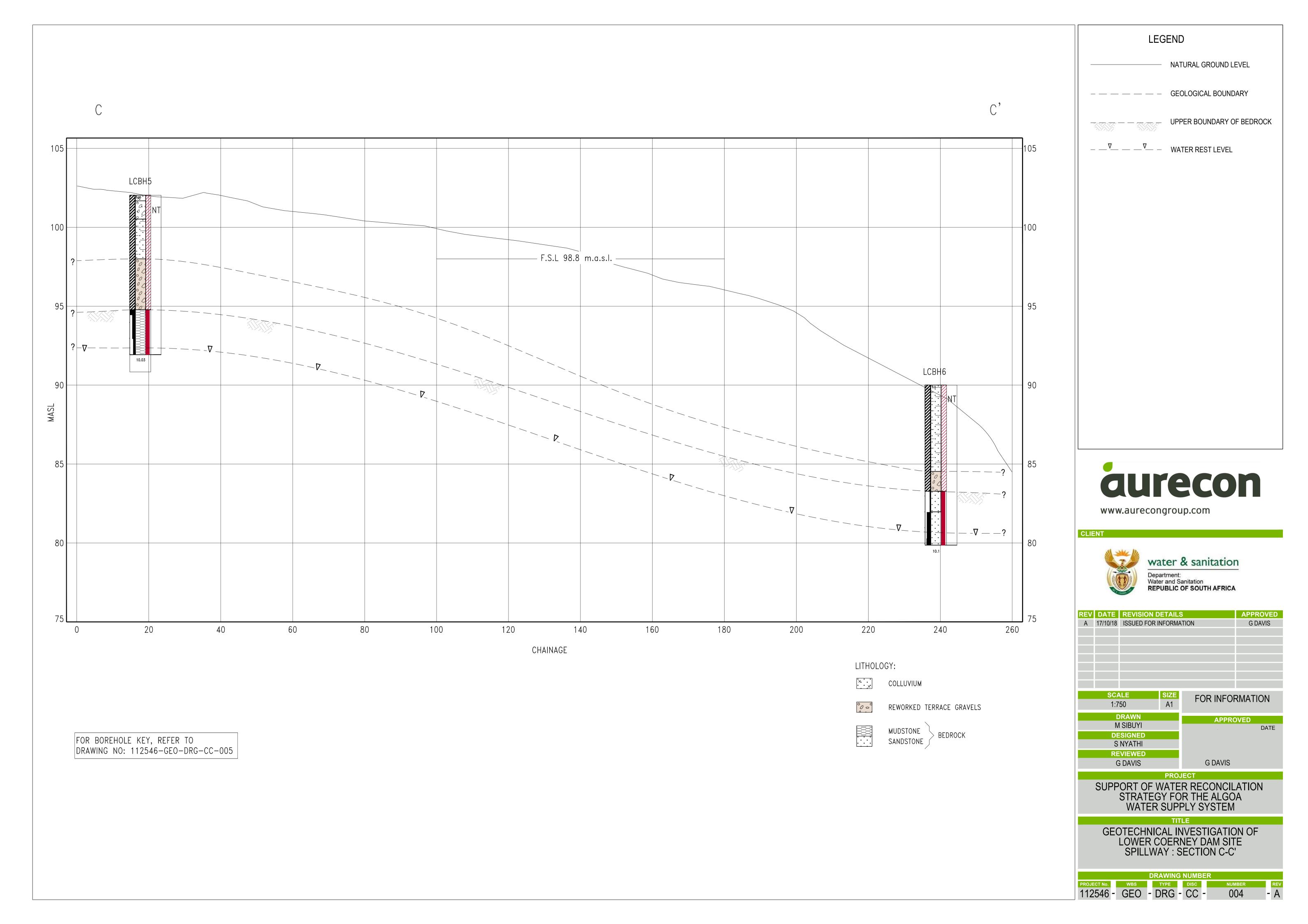

The leakage to the gravels and the underlying hard-rock geology would only produce a very limited impact on the hydrogeology of the area. The underlying hard-rock's permeability is probably too low to receive much water, and therefore the effect of the dam will likely be localized and small. The gravels have been discussed above; but the net effect on these will likely also be small because they are unlikely to be continuous for a great distance, and even if the are it is unlikely that they will be highly permeable throughout their length. This, however is not known, but 2D resistivity surveys can assist in mapping the gravel layer.


Potential groundwater effect on the planned dam


As stated above, the gravels will likely become permanently saturated below the dam and below the dam wall. I do not have the expertise to comment on whether this could have an effect on the stability of the dam wall.

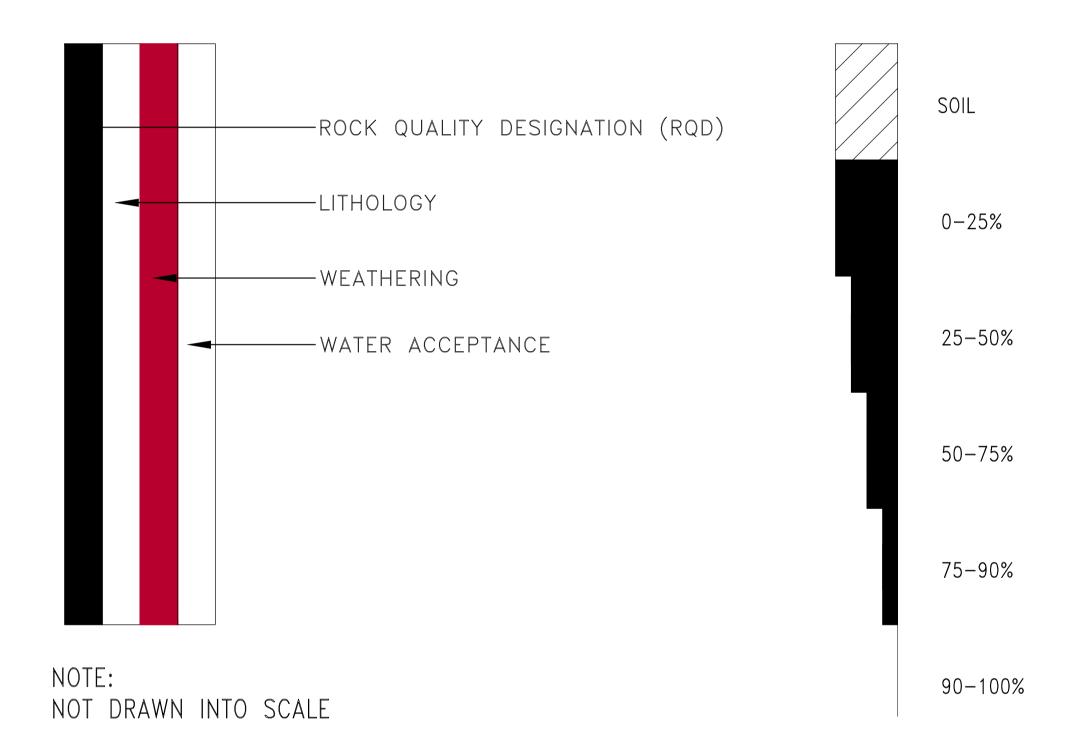

Ricky Murray 19 November 2018 Appendix I: Drawings

Borehole LO-25-WGS and Test χ γ Pit ID γ LCBH1 -58099.59 3702689.25 LCBH2 -58215.90 3702532.15 LCBH3 -58252.35 3702625.65			
LCBH4-58170.993702620.43LCBH5-58427.333702391.34LCBH6-58387.473702608.97LC2-58111.153702708.33LC3-58186.523702631.74LC4-58139.833702665.36LC5-58114.943702619.00LC6-58319.563702486.21LC7-58175.423702718.25LC8-58402.153702423.53LC9-58261.963702542.85LC10-58340.863702592.18			
LC11-58380.863702592.18LC12-58355.023702758.93LC20-58164.203702164.66LC22-57864.553702227.61LC23-57734.963702242.77	NOTES: 1. BOREHOLE (BH) CO-ORDINATES ACCURATELY SURVEYED TEST PIT (TP) CO-ORDINATES - HANDHELD GPS.	Ene 2	

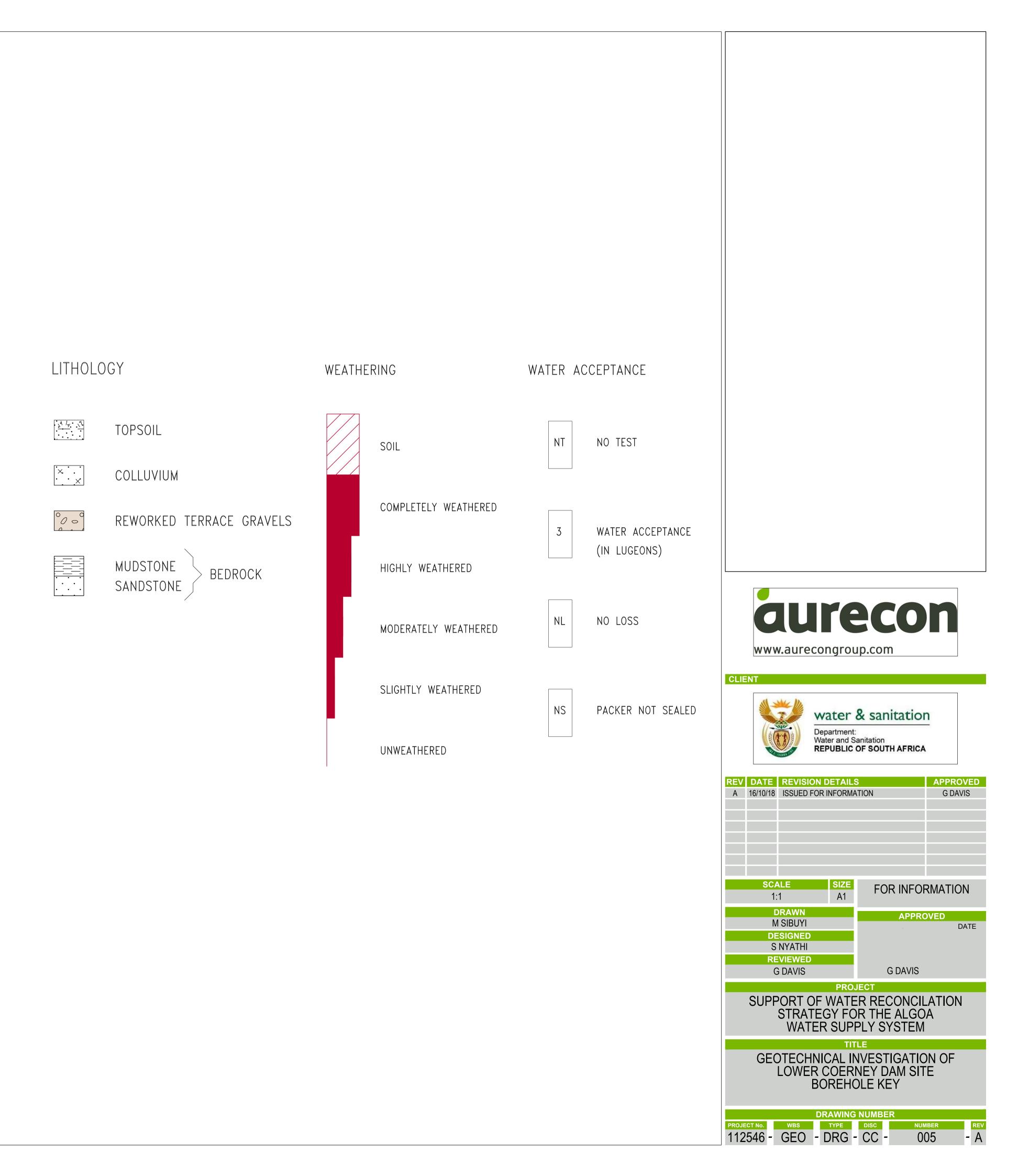


MUDSTONE SANDSTONE BEDROCK

> FOR BOREHOLE KEY, REFER DRAWING NO: 112546-GEO-



BOREHOLE KEY


KEY:

ROCK QUALITY DESIGNATION (RQD)

NOTE:

LITHOLOGY IS INDICATED ON RESPECTIVE DRAWINGS 112546-GEO-DRG-CC-002A-A 112546-GEO-DRG-CC-002B-A 112546-GEO-DRG-CC-003-A & 112546-GEO-DRG-CC-004-A:

Document prepared by

Aurecon South Africa (Pty) Ltd Reg No 1977/003711/07

Aurecon Centre Lynnwood Bridge Office Park 4 Daventry Street Lynnwood Manor 0081 PO Box 74381 Lynnwood Ridge 0040 South Africa

T +27 12 427 2000
 F +27 86 556 0521
 E tshwane@aurecongroup.com
 W aurecongroup.com

Aurecon offices are located in: Angola, Australia, Botswana, China, Ghana, Hong Kong, Indonesia, Kenya, Lesotho, Macau, Mozambique, Namibia, New Zealand, Nigeria, Philippines, Qatar, Singapore, South Africa, Swaziland, Tanzania, Thailand, Uganda, United Arab Emirates, Vietnam.